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Constraining extreme precipitation projec-
tions using past precipitation variability

Wenxia Zhang 1, Kalli Furtado 2, Tianjun Zhou 1,3 , Peili Wu 2 &
Xiaolong Chen 1

Projected changes of future precipitation extremes exhibit substantial
uncertainties among climate models, posing grand challenges to climate
actions and adaptation planning. Practical methods for narrowing the pro-
jection uncertainty remain elusive. Here, using large model ensembles, we
show that the uncertainty in projections of future extratropical extreme pre-
cipitation is significantly correlatedwith themodel representations of present-
day precipitation variability. Models with weaker present-day precipitation
variability tend to project larger increases in extreme precipitation occur-
rences under a given global warming increment. This relationship can be
explained statistically using idealized distributions for precipitation. This
emergent relationship provides a powerful constraint on future projections of
extreme precipitation from observed present-day precipitation variability,
which reduces projection uncertainty by 20–40% over extratropical regions.
Because of the widespread impacts of extreme precipitation, this has not only
provided useful insights into understanding uncertainties in current model
projections, but is also expected to bring potential socio-economic benefits in
climate change adaptation planning.

The prospect that global warming leads to an intensified hydrological
cycle and increased precipitation extremes has been supported
by increasing evidence from theory, observations and model
simulations1–6. To copewith the impacts of extremeprecipitation, such
as floods, disruption to ecosystems and economic growth7, mitigation
and adaptation planning requires reliable projections of extreme
precipitation. However, the current state-of-the-art climate models
exhibit substantial uncertainty in themagnitudes of projected extreme
precipitation changes, particularly at regional scales, despite generally
agreeing on the direction of such changes1–3. Such uncertainty mainly
arises from model differences, which lead to different model respon-
ses to identical external forcings8.

To achieve reliable projections and better inform decision-mak-
ing, growing efforts have been devoted to understanding and con-
strainingmodel uncertainty. One of themost promising approaches to
reducing projection uncertainty is emergent constraint. It is based on

strong statistical relationships between some observable aspects
of current climate and future change across models, that can be sup-
ported by physical or mathematical reasoning9. For extreme pre-
cipitation projections, several emergent constraints have been
proposed on large spatial scales. For tropical extreme precipitation,
the projection uncertainty across models can be related to their
interannual variability10, as well as the projected global mean pre-
cipitation change11. For extratropical wet regions, over large spatial
aggregations, the forced response of extreme precipitation in far
future is positively correlated with that in the historical period across
models12. The robustness of an emergent constraint will be further
enhanced if the statistical relationship can be supported with clear
process understanding.

Despite being proposed, attempts to apply such observational
constraints still face considerable challenges. Firstly, the lack of long-
running, high-quality extreme precipitation observations with wide
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spatial coverages hinders reliable estimates of the observed variability
or change. Secondly, the observed changes in extreme precipitation in
past decades are affected by both external forcings and internal varia-
bility. Thirdly, the emergent relationships on extreme precipitation
projections proposed so far are mostly for large spatial averages (e.g.,
over the tropics or extratropical wet regions as awhole); while decision-
making requires regional information. Finally, our physical under-
standing of many proposed emergent relationships is still limited.

Here we propose a perspective to understand the model uncer-
tainty in extreme precipitation projections, with a solid statistical
basis. We show that the inter-model scatter of future changes in
extreme precipitation frequency is significantly linked to model
representations of present-day precipitation variability: models which
have more variable precipitation in the present-day, tend to project
smaller increases in extreme precipitation frequency. This emergent
constraint can be understood as a statistical necessity for gamma
distributions under reasonable assumptions. The constraint reduces
model uncertainty in regional extreme precipitation projections in the
extratropics by 20–40%.

Results
Establishing the emergent relationship in models
Extreme precipitation, which lies in the tails of the probability density
function (PDF) of precipitation, is closely related to the width of the
PDF, and hence, precipitation variability13–15. This has motivated us to
connect model projected extreme precipitation changes with their
representations of variability.

We investigate extreme precipitation changes under specific
global warming levels. We usemulti-model simulations in the Coupled
Model Intercomparison Project Phases 5 and 6 (CMIP5 and CMIP6)
under high emission scenarios to maximize the ensemble size
(see Methods; Supplementary Tables 1, 2; 60 models in total). We
mainly show precipitation events at synoptic timescales (consecutive
5-day precipitation, pr5d), but note that the emergent relationship
holds across a range of timescales for daily- to monthly-scale events
(see Methods). We focus on changes in the frequency of extreme
precipitation given an extreme event threshold (moderate extremes
such as the 95th percentile, R95, in the baseline; calculated using all
wet anddry events), under a givenglobalwarming increment (e.g., 3 °C
warming relative to present day; see Methods). This is referred to as
probability ratio (PR)16, measured by the ratio of occurrence prob-
ability in the future period and the baseline (see Methods). For pre-
cipitation variability we use the deviation of extreme events from the
median state (i.e., the difference between the 95th and 50th percentile
precipitation events, R95-R50)17. Other definitions, such as standard
deviation18,19, are also tested but do not affect the emergent relation-
ship (see Methods).

The projected probability ratios of extreme precipitation under a
given global warming increment are significantly correlated with the
baseline precipitation variability across models (Fig. 1). Significant
negative correlations are seen in the extratropics, exceeding −0.6 on
grid point scales overmost regions. This negative correlation indicates
that models with weaker baseline precipitation variability project lar-
ger future change in precipitation extremes. The relationship remains

correlation coefficient

Fig. 1 | The emergent relationship inmodel simulations. Inter-model correlation
between the present-day precipitation (pr5d) variability and the probability ratio of
extreme precipitation changes under a 3 °C global warming increment in the joint
ensemble of CMIP5 and CMIP6 (Coupled Model Intercomparison Project Phases 5
and 6) using Representative Concentration Pathway 8.5 (RCP8.5) and Shared
Socioeconomic Pathway 5-8.5 (SSP5-8.5) scenario projections, respectively. Differ-
ent seasons are considered, for March-to-May (MAM; a), June-to-August (JJA; b),
September-to-November (SON; c) and December-to-February (DJF; d). Here

extreme precipitation is defined as those exceeding the 95th percentile in the
baseline (R95); probability ratioof extremeprecipitation ismeasuredby the ratio of
occurrence probability in the future period and the baseline; precipitation varia-
bility is measured by the difference between the 95th and 50th percentile pre-
cipitation events (R95-R50). Statistically significant correlations at the0.05 level are
stippled (evaluated using a two-tailed t-test, assuming different models are
independent).
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steady across seasons (Fig. 1). In contrast, this relationship is loose in
the tropics, which will be revisited later.

We look further into typical regional cases where significant
relationship exists, for example, the Northern hemisphere mid-
latitudes (45°−70°N) in June-to-August (JJA), the Southern hemi-
spheremid-latitudes (45°−70°S) in JJA, NorthernAsia in JJA,WestNorth
Pacific in JJA, Europe inDecember-to-February (DJF), andEasternNorth
America in DJF (see blue boxes in Fig. 1 for region definitions). The
negative relationship is statistically significant over these regions
across models (Fig. 2). Models with stronger present-day precipitation
variability tend to project smaller increases in extreme precipitation
frequency (i.e., smaller probability ratios). More than 20% of the inter-
model variance in the projected probability ratios of extreme pre-
cipitation canbeexplained by the different representations of baseline
precipitation variability over these typical regions. Over wide oceans
such as the Southern hemisphere mid-latitudes where extreme pre-
cipitation is less affected by local effects, the emergent relationship is
more evident with an explained variance reaching nearly 50% (Fig. 2b).

The emergent relationship identified in the joint ensemble of
CMIP5 andCMIP6 couldbepartly affectedby forcing differences in the
Representative Concentration Pathway 8.5 (RCP8.5) and Shared
Socioeconomic Pathway 5-8.5 (SSP5-8.5) scenarios. However, a sig-
nificant emergent relationship also holds for the 1pctCO2experiments,
which use identical forcing for all models whereby atmospheric CO2

concentration increases by 1% per year from the pre-industrial level
(Supplementary Figs. 1–2; see Methods). This agrees with our current
understanding that extreme precipitation responses are more deter-
mined by the total amount of warming and model uncertainty rather
than emission scenarios (Supplementary Fig. 3; see also refs. 8,20).
Hence, the emergent relationship identified in scenario projections in
the joint CMIP5 and CMIP6 ensemble is robust.

Constraining extreme precipitation projections
With the identified emergent relationship, we further constrain
extreme precipitation projections using observed precipitation varia-
bility.Multiple global-scale daily precipitation observations areused to
account for observational uncertainty, including the Global Precipita-
tion Climatology Project (GPCP), the Global Precipitation Climatology
Centre (GPCC), National Oceanic and Atmospheric Administration
(NOAA) Climate Prediction Center (CPC) unified gauge-based analysis,
and the European Centre for Medium-Range Weather Forecasts
(ECMWF) Reanalysis v5 (ERA5) (see Methods). Limited by the short
time span of daily observations, a period of 18 years (1997–2014) is
used to estimate the baseline precipitation variability for both obser-
vations and models. This estimate is not significantly affected by
internal variability, as the influence of internal variability on the multi-
model spread is negligible (compare the gray horizontal bars with
inter-model scatters in Fig. 2; see Methods and Supplementary
Table 3). Thus, the emergent relationship is dominated by model
uncertainty rather than internal climate variability.

How much uncertainty could be potentially reduced in extreme
precipitation projections? We correct the model projected probability
ratios of extremeprecipitationby removing the linear bias due to over-
or under-estimation of baseline precipitation variability21–23 (see Meth-
ods). Here we take the average of present-day precipitation variability
estimates from multiple observations as the ‘perfect’ observation for
the constraint. With the correction, the ensemblemedian estimates of
extreme precipitation changes could either increase (i.e., more fre-
quent) or decrease (i.e., less frequent) compared to uncorrected pro-
jections in different regions (see vertical lines in Fig. 3). This depends
on whether the multi-model ensemble generally overestimates (e.g.,
NorthernAsia in JJA; Figs. 2c, 3c) or underestimates (e.g., Europe inDJF;
Figs. 2e, 3e) the baseline precipitation variability, which is region
dependent (figure not shown). For example, the constrained median
estimate suggests a 54% increase in extremes in Northern Asia under

3 °C warming than present day, which is 20% higher than raw projec-
tions; while for Europe, the constraint suggests a 75% increase in
extremes, which is 16% lower than raw projections (Fig. 3). Meanwhile,
the uncertainty range of extreme precipitation projections is con-
sistently reduced by this constraint in all regions (Fig. 3). In the
extratropics, ~20–40% of the inter-model variance in extreme pre-
cipitation projections could be potentially reduced by the observa-
tional constraint.

Supporting the emergent constraint in a statistical framework
This emergent relationship can be interpreted in a statistical frame-
work based on gamma distributions. We parameterize precipitation
rates in the baseline climate with a gamma distribution:

f k,θ xð Þ, ð1Þ

where k and θ are the shape and scale parameters, respectively. In
response to climate warming, the precipitation distribution is trans-
formed by simultaneously shifting and stretching the baseline dis-
tribution to obtain a new climatology:

δ,νf k,θ
� �

xð Þ : = f k + δ,νθ xð Þ: ð2Þ

Both transformation parameters, the shift parameter δ and
stretch parameter ν, are closely related to changes in mean pre-
cipitation and precipitation variability (see detailed physical inter-
pretations in Methods).

Given an extreme event threshold, the probability ratio can be
calculated analytically for each transformation (see Methods). For
given values of mean precipitation in the baseline climate and its
fractional change in a perturbed climate, it can be shown that the
probability ratio of precipitation extremes is a decreasing function of
the baseline precipitation variability, on condition that the stretch
parameter (ν) does not differ substantially between transformations.
To visualize this, Supplementary Fig. 4 shows the effect of subjecting
two gamma distributions to an idealized transformation: in the
example shown, the narrower baseline distribution gives a larger
probability ratio of extreme precipitation. This relationship can be
understood statistically as follows. Narrower distributions (i.e., those
with smaller variability) have lower extreme event thresholds (e.g.,
the 95th percentile) than broader distributions. Therefore, given the
same change in mean precipitation (similar displacement of PDFs)
under warming, the lower event threshold is more easily exceeded,
leading to a greater increase in extreme event occurrences for nar-
rower distributions.

The above analysis motivates a more general claim that, for a
given region, the probability ratio of extreme events is smaller in
models with larger baseline variability. Implicit in this claim is an
assumption that selecting a region is sufficient to uniquely determine
both a baseline mean precipitation and its fractional change under a
given amount of warming (the validity of this assumption will be
revisited below).

This general claim is verified in a wider parameter space con-
sidering all possible transformations of distributions. Taking the
selected regions as examples, we use the multi-model ensemble
medians to estimate the present-day precipitation means and the
fractional changes under a given warming level. The statistical calcu-
lations of probability ratios for the full range of possible transforma-
tions are shown in Fig. 4 (background shadings; see Methods). The
probability ratios increase if the baseline variability (related to θ)
decreases or if the distributions are stretched more under warming (ν
increases). This confirms our claim for the simplified case of gamma
distributions.

Do the statistical argument andmodel results support eachother?
We examine how the model empirical estimates of probability ratios
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vary in the parameter space and qualitatively compare it with the
statistical expectations (i.e., filled dots versus background shadings in
Fig. 4; see Methods). Generally, the empirically estimated probability
ratios from multi-models exhibit a similar pattern in the parameter
space as the statistical expectation, both of which tend to increase

from the bottom-right to top-left in Fig. 4. Because the modeled
stretch parameters (ν) vary in a relatively small range in these extra-
tropical regions, the negative relationship between extreme pre-
cipitation probability ratios and baseline precipitation variability
can emerge across models (dots in Fig. 4). Thus, the inter-model

Fig. 2 | The emergent relationship over typical regions. Scatterplots of the
present-day precipitation (pr5d) variability and the probability ratio of extreme
precipitation (95th percentile of pr5d) changes under a 3 °C global warming
increment in the joint ensemble of CMIP5 and CMIP6 (Coupled Model Inter-
comparison Project Phases 5 and 6). Regional cases include: Northern hemisphere
mid-latitudes (45°−70°N) in June-to-August (JJA; a), Southern hemisphere mid-
latitudes (45°−70°S) in JJA (b), Northern Asia in JJA (c), West North Pacific in JJA (d),
Europe in December-to-February (DJF; e) and Eastern North America in DJF (f). See

blue boxes in Fig. 1 for region definitions. Numbers denote individual models (blue
for CMIP5 and red for CMIP6). Thin gray lines are linear fits, with correlation
coefficients noted in top-right (asterisks denoting significant correlation at the 0.05
level). Markers denote present-day precipitation variability in different observa-
tions or reanalysis, with theirmean values shown in vertical lines. Horizontal bars in
the bottom of each panel denote the range (minimum to maximum) of internal
variability in the estimation of present-day precipitation variability from 5 SMILEs
(Single-Model Initial-condition Large Ensembles; see Methods).
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relationship canbe interpretedby an idealizedmodel basedongamma
distributions, which supports the reliability and robustness of this
emergent relationship.

Our idealized model also helps understand why the relationship
emerges in the extratropics, but not in the tropics. This is because the
assumption underlying the idealized model, i.e., that the models pro-
ject similar changes in mean precipitation for a given global warming

increment, holds reasonably in the extratropics but does not in the
tropics (Supplementary Fig. 5). If models disagree widely on the
magnitude of mean precipitation sensitivity, the probability ratios of
extremes may not be dominated by baseline precipitation variability;
but rather, they can be additionally affected by different displace-
ments of the distributions. The large model uncertainty in tropical
precipitation responses is dominated by the large and model-

Fig. 3 | Constrained extreme precipitation projections. Unconstrained (gray)
versus constrained (orange) projections of probability ratios of extreme pre-
cipitation (95th percentile of pr5d) under a 3 °C global warming increment in the
joint ensemble of CMIP5 and CMIP6 (Coupled Model Intercomparison Project
Phases 5 and 6). The histograms show the fraction of models with a certain prob-
ability ratio. Dashed vertical lines indicate the multi-model ensemblemedians. The

relative reduction in inter-model variance in projections by the constraint is noted
in top-right. Regional results are shown for Northern hemisphere mid-latitudes
(45°−70°N) in June-to-August (JJA; a), Southern hemisphere mid-latitudes
(45°−70°S) in JJA (b), Northern Asia in JJA (c),West North Pacific in JJA (d), Europe in
December-to-February (DJF; e) and Eastern North America in DJF (f).
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dependent dynamical changes (related to atmospheric circulation
changes in response to sea surface warming patterns, changes in land-
sea temperature contrast, changes in atmospheric relative humidity,
etc.), which partly offset the thermodynamic contribution24–26. On the
other hand, extratropical precipitation responses aremore dominated
by thermodynamic effects and are thus more robust in models.

Discussion
Extremes, by definition, are low-likelihood high-impact events that
require fine details and subtle nonlinearity from climate models to
capture their occurrence and intensity. Some of those key processes
currently can only be parameterized in models due to the complexity
of climate system and the capacity of supercomputers. How to best

probability 
ratio
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utilize currently available climate model projections to assess future
risks of climate extremes and to aid “safe landing” is a grand challenge
to both the science community and policy makers (World Climate
Research Programme Lighthouse Activity Science Plan). Given the
urgent need for actionable climate science following the COP26, any
reduction in uncertainties of future climate projections, climate
extremes in particular, will undoubtedly bring valuable encourage-
ment to international climate actions and economic planning.

Here we have established an inter-model relationship between
extreme precipitation projections and the present-day precipitation
variability. This emergent relationship can be interpreted in a simple
statistical framework for gamma distributions. This statistical argu-
ment not only provides insights into understanding the projection
uncertainty, but also increases the credibility of the constraint. It
therefore provides an effective and physically meaningful way of
constraining regional extreme precipitation projections using
observed precipitation variability. The constraint not only reduces the
projection uncertainty by 20–40% regionally, but also adjusts the best
estimates of projections, implying altered consequences and impacts
of extremes. For example, the constraint suggests a 20% greater
increase in future precipitation extremes than raw projections in
Northern Asia, implying an even elevated potential flood risk.

We note that the emergent constraint works well for moderate
precipitation extremes but is not robust for very extremeprecipitation
events (e.g., thosebeyond the 99th percentiles; figurenot shown). This
can be understood statistically and physically. Statistically, the iden-
tified emergent relationship is based on the behavior of low-order
moments of the entire PDF of precipitation. However, very extreme
values (e.g., those beyond the 99th percentiles) lie in the far tail of the
precipitation PDF and are thus less constrained by low-ordermoments
of the precipitation PDF. Physically, extreme precipitation changes are
governed by both atmospheric moisture (i.e., thermodynamic) and
circulation (i.e., dynamic) changes. In particular, very extreme pre-
cipitation events are highly affected by dynamical effects (including
feedbacks from latent heat release)2,27–29, which are model-dependent
and can additionally contribute to model uncertainty in extreme pre-
cipitation responses.

The current constraint is framed in terms of probability of
extreme precipitation, and is less effective for extreme precipitation
intensity change (Supplementary Fig. 6 and Supplementary Discus-
sion). Further attempts to constrain projected changes in extreme
precipitation intensity, by considering, e.g., the thermodynamics and
dynamics of extremes, would be very useful.

An importantmerit of this emergent relationship is that it holds at
regional scales, and thus can be applied to different regions to make
regional extreme precipitation projections more reliable. This is
expected to provide actionable climate science to greatly benefit
regional adaptation planning, ranging from agriculture planning and
food security to flood-control systems and public safety, amongmany
other sectors.

Methods
Observational and reanalysis datasets
Global-scale daily precipitation from multiple observations and rea-
nalysis are employed to estimate precipitation variability. They include
(1) the GPCP30 covering 1997 to present (1° × 1°), (2) the GPCC31 Full

Data Daily Analysis covering 1982 to 2016 (1° × 1°), (3) the NOAA CPC
unified Gauge-based analysis32 covering 1979 to present (0.5° × 0.5°),
and (4) the ECMWF Reanalysis v5 (ERA5)33 covering 1979 to present
(0.25° × 0.25°). The GPCC and CPC datasets cover only land regions.
The present-day precipitation variability over 1997–2014 is used as an
observational constraint (this is the common period in all the obser-
vations and model historical simulations).

CMIP models
We use multi-model simulations of daily precipitation data from the
CMIP5 (35 models; Supplementary Table 1; ref. 34) and CMIP6 (25
models; Supplementary Table 2; ref. 35) archives that are currently
available. A large ensemble is required for the relationship on extreme
precipitation to emerge fromclimate noise. The emergent relationship
is established based on the joint ensemble of CMIP5 and CMIP6, using
historical simulations and projections under high emission scenarios
(RCP8.5 for CMIP5 and SSP5-8.5 for CMIP6). While the two emission
scenarios (i.e. RCP8.5 and SSP5-8.5) have the same radiative forcing at
the end of the 21st century, they differ in the pathway.

To test the robustness of the emergent relationship against sce-
nario difference, the emergent relationship is further examined under
identical external forcings for both CMIP5 and CMIP6 models, using
the 1pctCO2 experiment, where the atmospheric CO2 concentration
increases by 1%per year from thepre-industrial level. Results show that
the inter-model scatter of extremeprecipitation responses, and hence,
the emergent relationship, is dominated by model uncertainty rather
than forcing/scenario difference.

Changes in extreme precipitation
Precipitation events on a range of timescales fromdaily tomonthly are
considered, namely, prNd (N = 1, 5, 30), by applying a running average
to daily precipitation over N days. The precipitation indices, prNd, is
first computed onmodel native grids and then regridded to a common
1° × 1° grid boxes. Since rainy season varies between regions, we con-
sider precipitation events in different seasons, namely, March to May
(MAM), June to August (JJA), September to November (SON), and
December to February (DJF). We note that the emergent relationship
holds across the different timescales for 1-day, 5-day and 30-day pre-
cipitation events, we only show the results of pr5d in the main manu-
script for brevity (see Supplementary Figs. 7, 8 for the pr1d results).

Extreme precipitation events are defined as those exceeding a
high percentile (say, the 95th percentile, R95) in the present-day
baseline (1997–2014). Alternative event thresholds including R90, R98
and R99 are also tested which do not affect the emergent relationship
(see SupplementaryFig. 9 for example results ofR99).Wenote that the
emergent constraint works well for moderate precipitation extremes
but is not robust for very extreme precipitation events (e.g., those
beyond the 99th percentiles; see the Discussions section). In this
study, all days (including wet and dry days) are used to compute the
percentiles. It is preferable to calculate extreme precipitation using all
days rather than only wet days when comparing models with obser-
vations, because climate models have a common bias to simulate too-
frequent precipitation events, which affects percentiles calculated
over only wet days2.

We investigate changes in the frequency of extreme precipitation
under future warming, referred to as probability ratio16 (PR). It is

Fig. 4 | Supporting the emergent relationship in the statistical framework.
Probability ratios of extreme precipitation changes as a function of gamma distribu-
tion parameters (x-axis: the scale parameter θ; y-axis: the stretch parameter ν).
Background shadings are statistical calculations of probability ratios based on idea-
lized transformations (using Eqs. 2–4; seeMethods) based onmulti-model medians of
present-day mean precipitation (in mm/day) and its fractional change under warming
(α; noted in top-right). The dots are individual models, and their filled colors indicate
model empirically estimated probability ratios (based on the frequency of occurrence

of extreme events in model data). The location of model results in the parameter
space is determined by fitting model data into gamma distributions (see Methods).
Comparing how the background shadings and filled dots vary in the parameter space
shows that the statistical argument supports the model results qualitatively. Regional
results are shown for 5-day precipitation events (pr5d) for Northern hemisphere mid-
latitudes (45°−70°N) in June-to-August (JJA; a), Southern hemisphere mid-latitudes
(45°−70°S) in JJA (b), Northern Asia in JJA (c), West North Pacific in JJA (d), Europe in
December-to-February (DJF; e) and Eastern North America in DJF (f).
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measured as the ratio of occurrence probability of an extreme event
(with a given threshold) in a warmer climate and that in the baseline.

We consider warmer climates with a specific (such as 2 °C, 3 °C or
4 °C) globalwarming increment relative topresent day for eachmodel;
20-year segments are used for all the future periods. While the emer-
gent relationship remains significantwhendifferentwarming levels are
considered (figure not shown), there is a trade-off between higher and
lower global warming levels. Under higher global warming levels,
extreme precipitation changes are less affected by internal variability
and thus exhibit a larger signal-to-noise ratio, the inter-model rela-
tionship can clearly emerge from climate noise. However, fewer
models can reach a higher global warming level (e.g., 25 out of 60
CMIP5/CMIP6 models reach a 4 °C warming under high emission sce-
narios), resulting in a smaller sample size. Thus, as a trade-off between
the signal-to-noise ratio of extreme precipitation changes and the
sample size, we mainly show a 3 °C global warming level relative to
present day as the warmer condition. A total of 52 models reaching a
3 °C warming is used to investigate the emergent relationship.

Estimation of precipitation variability
Precipitation variability indicates the range that precipitation events
can vary in time. It can be represented by the standard deviation of
precipitation timeseries18,19. Alternatively, it can be represented by the
extent to which extreme events deviate from the normal state, such as
the difference between the 95th or 98th percentile precipitation event
and the 50th percentile event (i.e., R95-R50 or R98-R50; ref. 17). We
have confirmed that the emergent relationship is insensitive to the
different estimations of precipitation variability. For brevity, pre-
cipitation variability estimated as R95-R50 is shown in the main
manuscript (see Supplementary Fig. 10 for example results when
precipitation variability is measured by standard deviation).

We emphasize that the emergent relationship is robust and
insensitive to the timescales of precipitation events, extreme event
thresholds, and methods of estimating precipitation variability. This
increases the robustness of the emergent relationship.

Supporting the emergent relationship in the statistical
framework
We interpret the emergent relationship in a statistical framework for
gamma distributions. The claim is, for a given location, given the same
displacement in gamma distributions between the control and per-
turbed warmer climate, models with larger baseline precipitation
variability (i.e., wider PDF) yield smaller probability ratios of extreme
precipitation changes. In the statistical framework, it is required that
different models project the same displacement in precipitation PDFs
under warming. This is approximated by requiring models projecting
the same change in mean precipitation. To meet that, we assume that
for a given location, (1)models have the samemeanprecipitation in the
current climate state, and (2) they project the same fractional change
in mean precipitation given the same amount of warming. This is
reasonable as current global climate models have basic ability in
simulating mean precipitation climatology36.

To formulate, given a gamma distribution for precipitation in the
control climate:

f k,θ xð Þ, ð1Þ

where k and θ are parameters. The scale parameter, θ, is an indicator
of how rapidly precipitation frequency declines as precipitation
intensity increases, for relatively heavy precipitation events. The
shape parameter k determines how rapidly precipitation frequency
decays or grows for precipitation events with intensities much lower
than θ. A larger k leads to a less skewed distribution and shifts the
distribution to the right. The mean of the gamma distribution is kθ,
and the variance is kθ2.

In a perturbed warmer climate, where the precipitation distribu-
tion is shifted and stretched simultaneously, under transformations of
the form:

δ,νf k,θ
� �

xð Þ : = f k + δ,νθ xð Þ, ð2Þ

where δ and ν are transformation parameters, both of which are clo-
sely related to changes in mean precipitation and precipitation varia-
bility. The shift parameter, δ, is the fractional change in mean
precipitation at constant scale parameter (i.e. ν = 1), i.e., the pre-
cipitation change that occurs if the distribution changes shapewithout
altering the slope of the PDF tail. Similarly, the stretch parameter, ν, is
related to fractional change in precipitation variability at constant
shape parameter (i.e. δ =0). For the newgammadistribution, themean
is k + δð Þνθ, and the variance is k + δð Þ νθð Þ2.

Here we mainly consider regions with an increasing mean pre-
cipitation under warming, as these regions are generally expected to
experience increasing extreme precipitation and associated impacts,
thus requiring reliable projections. These regions cover widely over
the globe except for some subtropical subsidence regions37 (Supple-
mentary Fig. 11).

We assume that both the baseline mean precipitation (kθ) and its
fractional change (α) are constant for a given location. The latter can
be expressed as:

α : = 1 +
δ
k

� �
ν, ð3Þ

where α is constant and larger than 1. We also note that, for a region,
with the baseline mean precipitation (kθ) being constant, the baseline
variability or variance (kθ2) is solely determinedby the scale parameter
θ. For each transformation, Sδ,ν , define the probability ratio (PR) for an
extreme event threshold r:

PRδ,ν r; k,θð Þ:=
R1
r f k + δ,νθ xð ÞdxR1

r f k,θ xð Þdx : ð4Þ

Then the claim is, for a given location where kθ is constant, given
a fractional increase in themean (α > 1), for all transformationswith δ,ν
such that 1 + δ

k

� �
ν =α, the probability ratios of an extreme event (with

threshold r), PRδ,ν rð Þ, are decreasing functions of the baseline varia-
bility (related to θ).

We verify this claim by analytically estimating probability ratios
for the full range of possible transformations with different shift (δ)
and stretch (ν) parameters, based on Eqs. (2–4) (see background
shadings in Fig. 4 for regional examples). The statistical estimates of
probability ratios increase as baseline variability (θ) decreases, on
condition that the stretch parameter (ν) does not vary widely between
transformations (Fig. 4). This confirms our claim.

To interpret the inter-model relationship in the statistical frame-
work, here we examine how the model empirical estimates of prob-
ability ratios vary in the parameter space and qualitatively compare it
with the statistical expectations (cf. filled dots and background shad-
ings in Fig. 4). In Fig. 4, the dots denote individual models and their
filled colors indicate themodel empirically estimatedprobability ratios
(based on the frequency of occurrence of extreme events in model
data). To determine their location in the parameter space, we need to
estimate the parameters of precipitation PDF for each model. This is
achieved by fitting the model present-day and future precipitation
time series to gamma distributions (using Maximum Likelihood), and
then estimating the distribution parameters based on Eqs. (2–3). The
distribution parameters are first estimated on each grid cell and then
the area-weighted regional averages are derived, which are then used
to determine the location for each model in the parameter space in
Fig. 4. As a necessity for fitting the gamma distributions38, only
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precipitating events exceeding 0.1mm/day are used for the fit39,40. We
note that the gamma distribution fit is employed only to estimate the
parameters of precipitation PDF in models (as a simplification of the
actual change), based on which we interpret the inter-model rela-
tionship between the PDF parameters and extreme precipitation
probability ratio—such interpretation can only be qualitative.

Comparing how the background shadings and filled dots in Fig. 4
vary in the parameter space shows that the statistical argument sup-
ports the model results. Generally, the statistical calculations and
model-derived empirical estimates of probability ratios vary in the
same direction in the parameter space, both increasing as the baseline
variability (θ) decreases and as the stretch parameter (ν) increases
(Fig. 4). As themodeled stretch parameters (ν) vary in a relatively small
range in these extratropical regions, the negative relationship between
extreme precipitation probability ratios and baseline precipitation
variability can emerge across models (dots in Fig. 4). Thus, the emer-
gent relationship in models is well supported by the statistical argu-
ment. Note that we should not expect the probability ratios from the
statistical calculations and model direct empirical estimates to be
identical, because the precipitation distribution changes in climate
models are far more complicated than the simplified transformations
and the statistical calculations are based purely on the multi-model
median parameters.

Because the probability ratio of extreme precipitation is a func-
tion of the baseline variability (related to θ) and the stretch parameter
(ν), the inter-model relationship between the probability ratio and
baseline variability only emerges if the inter-model spread of the
stretch parameter is not too wide (Fig. 4). To assess the validity of this
condition,weneed to knowwhatdetermines the inter-model spreadof
the stretch parameter. Based on the above statistical argument, the
stretch parameter (ν) is proportional to the fractional change in pre-
cipitation variance, given the fractional change in mean precipitation
(α) being constant:

σ2ðP1Þ
σ2ðP0Þ =

ðk + δÞν2θ2

kθ2 =α � ν, ð5Þ

where P0 and P1 denote precipitation in the baseline and perturbed
climate, respectively, and σ2 denotes variance. It has been demon-
strated that the standard deviation of precipitation is proportional to
mean atmospheric humidity and the standard deviation of vertical
motion (see ref. 19 and their Eq. 12). This means that the stretch para-
meter (ν) is affected by a thermodynamic factor (related to change in
mean atmospheric humidity) and a dynamic factor (related to change
in circulation variance). The circulation change has been recognized to
be farmore uncertain than the humidity change inmodel projections41.
Thus, the inter-model spread in the stretch parameter is dominated by
that in the change of circulation variance. Hence, the validity of the
above condition on the constraint (that the inter-model spread of
stretch parameter is not too wide) depends on the projection
uncertainty of circulation variance change. The latter is itself an
interesting question that deserves dedicated research in the future.

The above statistical argument is established for regions where
meanprecipitation increases. Nowwediscuss how it applies to regions
with mean precipitation decreases. First, for cases where both the
mean and extreme precipitation decrease under warming, the results
can be inferred by ‘inverting’ the heuristic argument above. See again
Supplementary Fig. 4 for illustration. We have demonstrated that,
across models, for regions where both the mean and extreme pre-
cipitation increase (i.e., from climate state 0 to climate state 1), pre-
cipitation variability is negatively correlated with the probability ratio
of extreme precipitation:

PR =Prob1=Prob0, ð6Þ

where Prob0 and Prob1 are extreme event probability in respective
climate states. Thus, in inverse cases where both the mean and
extreme precipitation decrease (i.e., from climate state 1 to climate
state 0), precipitation variability is expected to be positively related to
probability ratio (see Supplementary Fig. 4 for illustration):

PR0 =Prob0=Prob1, ð7Þ

where PR0 denotes extreme precipitation probability ratio in inverse
cases. Indeed, in some subtropical subsidence regions (where both
mean and extreme precipitation decrease; Supplementary Fig. 11),
there is positive correlation from model results as seen in Fig. 1,
although significant correlations are limited and patchy.

Second, for cases where mean precipitation decreases but
extreme precipitation increases (i.e., hatched regions in Supple-
mentary Fig. 11), there is no significant correlation. As these are
mainly transition zones between regions getting wetter and drier, the
meanprecipitation change is close to zerowith lowmodel agreement
in the sign (Supplementary Fig. 11). This means the displacement of
precipitation PDF is small and the direction of displacement is
uncertain. As a result, the small PDF displacement may not be the
main factor of extreme precipitation changes; instead, changes
in PDF tails could play important roles in inducing extreme pre-
cipitation changes and their inter-model differences. This is incon-
sistent with the proposed argument, thus no significant relationship
is expected in these regions.

Confirming the emergent relationship using the 1pctCO2
experiment
We confirm the emergent relationship under identical external for-
cings for allmodels using the 1pctCO2 experiment. Here the baseline is
defined as the first 20 years in the 1pctCO2 experiments, and the
warming conditions are defined at a 3 °C global warming level (using
20-year periods) under the 1pctCO2 forcing relative to the baseline for
each model. Despite with a smaller multi-model ensemble (due to the
availability ofmodel data; 39models in 1pctCO2experiments versus 52
models in scenario projections, under a 3 °C warming increment), the
significant negative correlation between the baseline precipitation
variability and probability ratios of extreme precipitation remains
consistent under the 1pctCO2 forcing as that in scenario projections
(Supplementary Figs. 1, 2). This confirms the robustness of the emer-
gent relationship.

Influence of internal variability on the estimation of precipita-
tion variability
Limited by the availability of global-scale daily precipitation observa-
tions, a short period of 18 years (1997–2014) is used to estimate the
baseline precipitation variability. To explore the potential influence of
internal variability on the estimation of precipitation variability, five
Single-Model Initial-condition Large Ensembles (SMILEs) produced by
the US CLIVAR Working Group on Large Ensembles are employed42.
The 5 SMILEs providing daily precipitation output are CESM1,
CanESM2, CSIRO-MK3.6, GFDL-CM3, and EC-Earth (Supplementary
Table 3). Daily precipitation from historical simulations and RCP8.5
projections are used.

Within each SMILE, all the realizations are driven by the same
external forcings and differ only in initial conditions. Thus, the inter-
member difference within a SMILE represents internal variability.

Correction of model projections
In the framework of emergent constraint, once the inter-model rela-
tionship between future climate change Y and current climate X has
been established, a simple linear approximation between Y and X can
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be obtained based on multi-model ensembles21–23:

Y =aX +b, ð8Þ

where a is the regression coefficient and b is the regression constant
(evaluated via Ordinary Least Squares). In this study, Y is the prob-
ability ratioof extremeprecipitationchanges given anevent threshold,
and X is the baseline precipitation variability.Where this relationship is
statistically significant, the projection Y canbe calibrated based on this
inter-model relationship and the observed baseline precipitation
variability Xobs . Firstly, the bias in the simulated baseline precipitation
variability, Xbias, is obtained for each model:

Xbias =X � Xobs: ð9Þ

We then estimate the projection errors, Ybias, induced by Xbias

based on the identified relationship, for each model:

Ybias =aXbias =a X � Xobs

� �
: ð10Þ

Finally, the corrected projections, Ycorrected , are obtained by
removing this linear bias for each model:

Ycorrected = Y � Ybias : ð11Þ

Data availability
Daily precipitation observations or reanalysis can be acquired from: (1)
https://www.ncdc.noaa.gov/cdr/atmospheric/precipitation-gpcp-daily
for GPCP, (2) https://opendata.dwd.de/climate_environment/GPCC/
html/download_gate.html for GPCC, (3) https://psl.noaa.gov/data/
gridded/data.cpc.globalprecip.html for CPC, and (4) https://www.
ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5 for ERA5.
CMIP5 and CMIP6 data can be acquired from https://esgf-node.llnl.
gov/projects/esgf-llnl/. Single-Model Initial-condition Large Ensembles
can be acquired from https://www.cesm.ucar.edu/projects/
community-projects/MMLEA/. Key processed data have been depos-
ited at https://doi.org/10.7910/DVN/UZC5YL. Map data in Fig. 1 and
Supplementary Figs. 1, 5–7, and 11 is from the NCAR Command Lan-
guage (Version 6.6.2; 2019) [Software] (Boulder, Colorado: UCAR/
NCAR/CISL/TDD. https://doi.org/10.5065/D6WD3XH5).

Code availability
Key codes canbe accessed fromhttps://doi.org/10.7910/DVN/UZC5YL.
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