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DNA methylation is afundamental epigenetic mark that governs gene expression

and chromatin organization, thus providing awindow into cellular identity and
developmental processes’. Current datasets typically include only a fraction of
methylation sites and are often based either on cell lines that underwent massive
changes in culture or on tissues containing unspecified mixtures of cells?°. Here

we describe ahuman methylome atlas, based on deep whole-genome bisulfite
sequencing, allowing fragment-level analysis across thousands of unique markers

for 39 cell types sorted from 205 healthy tissue samples. Replicates of the same cell
type are more than 99.5% identical, demonstrating the robustness of cell identity
programmes to environmental perturbation. Unsupervised clustering of the atlas
recapitulates key elements of tissue ontogeny and identifies methylation patterns
retained since embryonic development. Loci uniquely unmethylated in an individual
cell type oftenreside in transcriptional enhancers and contain DNA binding sites for
tissue-specific transcriptional regulators. Uniquely hypermethylated lociare rare and
areenriched for CpGislands, Polycomb targets and CTCF binding sites, suggesting
anewrolein shaping cell-type-specific chromatin looping. The atlas provides an
essential resource for study of gene regulation and disease-associated genetic
variants, and a wealth of potential tissue-specific biomarkers for use in liquid biopsies.

6-9

Understanding how the same DNA sequenceisinterpreted differentlyin
different cell typesis afundamental challenge of biology. Gene expres-
sion, DNA accessibility and chromatin packaging are well-established
essential determinants of cellular phenotype. Underneath these lies
DNA methylation, astable epigenetic mark that underpins the lifelong
maintenance of cellular identity.

Available human DNA methylation datasets suffer from major
limitations. Multiple studies that have characterized methylomes of

embryonic development, differentiation, cancer or other settings
have relied on the lllumina BeadChip platforms, which are limited
to a predefined subset of 450,000 or 860,000 CpG methylation
sites, representing just 3% of around 30 million CpG sites in the
human genome'®. In addition, by measuring each CpG site indepen-
dently, such assays overlook coordinated patterns of DNA methyl-
ation occurring in blocks, the critical functional units of DNA
methylation™?,
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Most DNA methylation analysesinterrogated primarily bulk tissue,
thus precluding the study of minority cell types such as tissue-resident
immune cells, fibroblasts or endothelial cells, whereas others analysed
cultured cells, which may contain nonphysiological methylation pat-
terns introduced in vitro™. As a partial solution, recent studies used
single-cell RNA sequencing data from whole tissues to identify marker
genes expressed in specific cell types, then identified specific CpGs
whose methylation is anticorrelated with expression. These could
be used on array-based methylomes to deconvolute bulk tissue and
assess cell type composition or sample purity**, but might be insuffi-
ciently accurate foridentification of rare cellular contributionsin liquid
biopsies. Some studies of the human methylome did analyse isolated
primary cells using whole-genome bisulfite sequencing (WGBS), but
their scope was limited>**.

To overcome these limitations and to accurately characterize the
human cell methylome, we performed deep genome-wide sequencing
with paired-end, 150 base pair (bp)-long reads at an average sequenc-
ing depthof 30x (6.62x or greater) on fluorescent activated cell sorter
(FACS)-purified populations of 39 human cell type groups obtained from
freshly dissociated adult healthy tissues. We coalesced methylation pat-
ternsacross the entire genome into blocks of homogeneously methyl-
ated CpGsites and used these to study variation in methylation patterns
across cell types. Here we identify and characterize genomic regions
that are uniquely methylated in a tissue or cell-type-specific manner,
provide vignettes of their possible biological function and introduce
afragment-level deconvolution algorithm with applications such as
clinical diagnosis based on circulating cell-free DNA methylation.

Methylation atlas of human cell types

To portray genome-wide DNA methylationacross avariety of cell types,
we performed WGBS (150-bp-long paired-end reads to amean depth of
at least 30x) on 205 samples representing 77 primary cell types from
137 consenting donors. These were carefully sorted and mapped to the
human genome (hg19, hg38). Average sample purity (that is, propor-
tion of material from desired cell type) was over 90% as determined by
flow cytometry, gene expression and DNA methylation analysis. Sev-
eral samples showed lower purity (for example, colon fibroblasts 78%,
smooth muscle cells (SMC) 82%, endothelial cells 86% or adipocytes
87%). Detailed descriptions of sampleisolation and purity estimations,
aswellassampleinformation, are provided in Supplementary Table1,
Supplementary Figs.1-3 and Supplementary Information.

The cell types analysed (Fig. 1) represent most major human cell
types, allowing acomposite view of physiological systems (for example,
gastrointestinal tract, haematopoietic cellsand pancreas), aswellas a
comparison of similar cell typesin different environments (for example,
tissue-resident macrophages).

The 205 methylomes show great similarities between replicates
with distinctive changes between cell types in a block-like manner, as
shown in Fig. 1. We sought to identify genomic regions differentially
methylated in specific cell types to shed light on cell-type-specific
biological processes, define cell identity and facilitate development
of methylation biomarkers to identify the cellular origin of circulating
cfDNA fragments"*'21¢2,

We developed wgbstools, acomputational machine learning suite,
to represent, compress, visualize and analyse WGBS data (https://
github.com/nloyfer/wgbs_tools). We segmented the genome into
7,104,162 nonoverlapping continuous blocks by identification of
change pointsin DNA methylation patterns across multiple conditions.
Each block spans highly correlated CpG sites similarly methylated in
each sample but that may covary across cell types (Supplementary
Information). We retained 2,783,421 methylation blocks of at least
three CpGs with an average length of 544 bp (interquartile range
(IQR) =565 bp) and eight CpGs (IQR = 5 CpGs). Robust analysis of these
compact genomic units is more straightforward than individual CpG
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Fig.1|Methylation atlas of the adult human body. DNA methylation patterns
0of 205 methylomes (rows) across 344 CpGsites (columns) are demonstrated in
al8kbregion. Highlighted are regions unmethylated specifically in B cells (blue),
neurons (green), thyroid epithelium (yellow) and neurons/oligodendrocytes
(oliogodend.) (pink).

sites and because of the regional nature of methylation can be viewed
as the biological ‘atoms’ of human DNA methylation®.

Interindividual variation in methylation

Methylation patterns were extremely robust across different individu-
als.For most cell types, 0.5% or less of blocks showed a difference of 50%
or more across different donors compared with 4.9% among samples
of different cell types (Extended Data Fig. 4). This high similarity in
DNA methylation across donorsisona par with the estimated interin-
dividual variability of genomic sequence*. Whereas the definition of
50% is somewhat arbitrary, other thresholds (35-50%) show a similar
trend, with 0.5% or less variable blocks. Similar interindividual varia-
tion was observed in replicates obtained from different laboratories
(Supplementary Table 1). Strikingly, for cell types with n > 3 biologi-
cal replicates, 195 of 197 samples (99%) showed the highest similarity
to another replicate (rather than to another cell type from the same
donor). Theseresults demonstrate the reproducibility of preparations
but also, in agreement with previous studies®, highlight the funda-
mental biological phenomenon that DNA methylation is primarily
determined by cell lineage and cell-type-specific programmes rather
than by genetic or environmental factors.

Methylation records developmental history

Whereas DNA methylation patterns reflect the functional identity
of acell, they could also be used to track its developmental history.


https://github.com/nloyfer/wgbs_tools
https://github.com/nloyfer/wgbs_tools
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Fig.2|Unsupervised agglomerative clustering reflects human developmental lineage of healthy cell types. Cell types are indicated by edge colours.

To identify patterns shared by the progeny of early progenitors, we
calculated average methylation within blocks of at least four CpGs
and selected those showing the highest variability across all samples
(21,000 blocks, top 1%; Supplementary Table 2). We then clustered all
205 methylomes using an unsupervised agglomerative algorithm that
iteratively identifies and connects the two closest samples regardless
of their labelling®. This analysis systematically grouped biological
samples of the same cell type (Fig. 2), similar to array-based clustering
of purified human blood cells®. This supports the reproducibility of
cellisolation and suggests that three or four replicates of each normal
cell type are sufficient to infer its methylation patterns for practical
applications such as biomarker identification.

Strikingly, theresulting fanning diagram recapitulates key elements of
lineage relationships among human tissues. For example, pancreaticislet
celltypes (alpha, betaand delta), which originate from the same embry-
onic endocrine progenitor®, densely cluster together. Consistent with
methylomesreflecting lineage rather than function, islet cells further clus-
ter with pancreatic duct and acinar cells, and then with hepatocytes, with
whom they share endodermal origins. Conversely, endoderm-derivedislet
cells do not cluster with ectoderm-derived neurons® despite common
tissue-specific gene regulation and exocytosis machinery®.

Additional examples include the clustering of gastric, small intestine
and colon epithelial cells; the clustering of all blood cell types; and the
clustering of multiple mesoderm-derived cell types including vascular
endothelial cells, adipocytes and skeletal muscle. Interestingly, lung bron-
chial epithelium clustered with oesophagus and oral epithelium whereas
lungalveolar epithelium clustered with intestinal epithelium, consistent
with evidence of early developmental origins of the alveolar cell lineage”.

Some methylation patterns were common to lineages that formed
during early developmental stages. For example, 892 regions were
unmethylated in epithelial cells derived from early endodermal deriva-
tivesand methylated in mesoderm-and ectoderm-derived cells (Meth-
ods). We suggest that these were demethylated in the endoderm germ
layer, with derived cell types retaining these patterns decades later
(Extended Data Fig. 5a). Because endoderm derivatives do not share

common function or gene expression, this provides yet another exam-
ple of methylation patterns as a stable lineage mark.

Finally, we applied the same segmentation and clustering approach
toapublished methylation atlas from the Roadmap Epigenomics pro-
ject*. The algorithm did not group related cell types, and often clus-
tered samples based on donor identity. This further emphasizes the
importance of careful purification of homogeneous cell types, avoiding
mixed cell populations (Extended Data Fig. 5b).

Cell-type-specific methylation markers

We next turned to study genomic regions differentially methylatedina
cell-type-specific manner. We organized the 205 samplesinto 39 groups
of specific cell types, including blood cell types (B, T, natural killer (NK),
granulocytes, monocytes and tissue-resident macrophages), breast epi-
thelium (basal and luminal), lung epithelium (alveolar and bronchial),
pancreaticendocrine (alpha, betaand delta) and exocrine (acinar and
duct) cells, vascular endothelial cells from various sources, cardiomyo-
cytesand cardiac fibroblasts and more. We also defined 12 supergroups
in which related cell types were grouped, including muscle cells, gas-
trointestinal epithelium, pancreas and more (Supplementary Table 3).

We then focused on differentially methylated blocks comprising
five or more CpGsthat areunmethylated in one group of cell types but
methylated in all other samples, or vice versa. Intriguingly, almost all
regions (97%) were unmethylated in one cell type and methylated inall
others. We then sorted these differential regions by absolute difference
in methylation in target cell type versus all other samples (Methods
and Supplementary Information).

The top 25 differentially unmethylated regions for each cell type
comprise ahuman cell-type-specific methylation atlas of 1,246 markers
(Fig.3and Supplementary Table 4). These regions are uniquely unmeth-
ylated in particular cell types (average methylation 13%) and methyl-
ated in all other samples (average methylation 91%), and can serve as
sensitive biomarkers for quantification of the presence of DNA froma
specific celltypeinamixture. The markersinclude 953 cell-type-specific
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a Human methylation atlas
953 cell type-specific unmethylated regions (top 25 per type)
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Fig.3|A human methylation atlas of 205 samples across 39 cell type
groups. a, Atotal of 953 genomic regions unmethylated in a cell-type-specific
manner. Each cellin the plot marks the average methylation of one genomic
region (column) ateach of 39 cell types (rows). Up to 25 regions are shown per
celltype, withamean length of 356 bp (nine CpGs) per region. b, The top

25 cardiomyocyte regions. For each region we plot the average methylation of
each CpGsite (columns) across all 205 samplesin the atlas, grouped into 39 cell
typesasbefore. ¢, Alocus specifically unmethylated in cardiomyocytes. This
marker (highlightedinlight blue)is120 bpinlength (six CpGs) andis located in

unmethylated loci, as well an additional 293 loci that are unmethylated
in few related cell types. A fragment-level analysis further shows that
the vast majority of DNA fragments at these regions are unmethylated
inthe target cell type compared withalmost noneinall other cell types
(Extended DataFig. 6). The atlas has various applications, including the
analysis of circulating cell-free DNA fragments'® 227 Importantly,
only about 1% of cell type-specific markers are covered by reduced rep-
resentation bisulfite sequencing (RRBS), 4-8% by methyl-sequencing
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thefirstintron of MYL4, a heart-specific gene (transcripts per million (TPM)
expressionof 2,518 inatrial appendage, GTEx inset). Genomic snapshot
depicts average methylation (purple tracks) across six cardiomyocyte samples,
four cardiac fibroblast samples and three aortasamples (two endothelial

and one SMC). d, Visualization of bisulfite-converted fragments fromthree
cardiomyocyte samples, one cardiac fibroblast sample and two aortasamples
(endotheliumand SMC). Shown arereads mapped to chr.17: 45289451-45289570
(hg19), withatleast three covered CpGs. Yellow and blue dots denote methylated
and unmethylated CpGsites, respectively.

hybrid capture panels and 14-24% are represented in single-CpG 450K/
EPIC arrays'®, emphasizing the benefits of whole-genome sequencing
for exhaustive identification of biomarkers.

Human cell-type-specificregulatory maps

We next turned to characterize these sets of cell-type-specific dif-
ferentially unmethylated regions. For this we identified the top
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Fig.4|Cell-type-specificmarkers as putative enhancers. a, Average ChIP-
seqsignalfor theactiveregulatory marker H3K27ac, enhancer marker
H3K4mel, DNA accessibility and chromHMM enhancer annotations for the

top 250 cell-type-specificunmethylated markers for monocytes/macrophages.
Average signal for the top 250 markers of other blood cell types (granulocytes
and B, Tand NK cells) shown as grey lines, for comparison. b, Cell-type-specific

250 unmethylated markers for each cell type (Supplementary Table
4b) and used GREAT to identify those genes adjacent to each group
of markers, and to test their enrichment for various gene-set annota-
tions™. Genes adjacent toloci uniquely unmethylated inagiven cell type
typically reflect the functional identity of that cell type. For example,
genes near B cell markers were enriched for B cell morphology, differ-
entiation, IgM levels and lymphopoiesis; NK cell markers were associ-
ated with NK cell-mediated cytotoxicity, the haematopoietic system,
cytotoxicity and lymphocyte physiology; Fallopian tube markers were
enriched for egg coatand perivitelline space; and cardiomyocyte mark-
ers for cardiac relaxation, systolic pressure, muscle development and
hypertrophy (Supplementary Table 5).

markers are enriched for regulatory motifs. Shown are the top TF binding site
motifs, enriched among the top 1,000 differentially unmethylated regions per
celltype, using HOMER motif analysis. Motifs similar to previous (more
significant) hits notincluded. Shown are HOMER binomial P values. Alv.,
alveolar; Bronch., bronchial; Endoth., endothelium; Ep., epithelium; Oesoph.,
oesophagus; Panc., pancreas.

We then analysed the DNA accessibility and chromatin packaging of
cell-type-specific markers as defined by assay for transposase-accessible
chromatin using sequencing (ATAC-seq), DNase | hypersensitive site
sequencing (DNasel-seq)*** and histone marks indicative of active pro-
motersand enhancers*. The top 250 unmethylated markers for monocytes
and macrophages are highly accessible and characterized by H3K27acand
H3K4melin monocytes, whereas markers of other cell types show no
enrichment in monocytes (Fig. 4a), with similar results for markers of
other celltypes (Extended Data Fig. 7). We also show strong coordinated
enrichment of chromHMM enhancer annotations at cell-type-specific
markers® (Fig. 4a). These findings are consistent with previous studies that
have associated tissue-specific demethylation with gene enhancers'*.
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To further assess the biological importance of cell-type-specific
unmethylated regions, we studied their association with transcription
factors (TFs) that could either affect DNA methylation or bind DNA in
a cell-type-specific manner, depending on methylation and chroma-
tin*78, Weidentified the top 1,000 unmethylated markers per cell type
(Supplementary Table4c) and performed motif analysis using HOMER*
to calculate the enrichment of known TF binding motifs (Supplemen-
tary Table 6a). For most cell types the top motifsincluded master regu-
latorsand key TFs (Fig. 4b). For example, B cells are enriched for Ebf2/
HEB/E2A, granulocytes for CEBP/AP1/ETS and T cells for ETS/RUNX.
This association between cell-type-specific unmethylated regions
and TF binding motifs can identify new gene regulatory circuits and
expose distal enhancers active in specific cell types.

Weaimed toidentify the target genes of putative enhancers marked
by cell-type-specific demethylation. Top markers frequently fall within
intronic regions and are likely to regulate these genes (for example,
glucagonin pancreaticalphacells, NPPA and MYL4 in cardiomyocytes
and MBPinoligodendrocytes; Supplementary Table 7), or proximally to
probable targets (forexample, abetacell marker 5 kb from the insulin
gene). Other markers are further apart from their target genes. We
devised acomputational algorithm to identify genes in the proximity
of cell-type-specific markers showingincreased gene expression levels
under matching conditions (Methods). This highlighted hallmark genes
for many cell types and suggested putative targets for many of the top
25 unmethylated markers for each cell type. For example, hepatocyte
markers were associated with APOE, APOC1, APOC2 and the glucagon
receptor. Similarly, cardiomyocyte markers were associated with NPPA,
NPPB and myosin genes; and pancreaticislet markers with insulin and
glucagon genes (Supplementary Table 7). These findings further sup-
port the principle that loci specifically unmethylated in a given cell
type are probably enhancers positively regulating genes expressed
in this cell type, often controlling adjacent genes. We note, however,
thatgenesadjacenttoalocus specifically unmethylatedin agiven cell
type are often broadly expressed beyond this cell type (Discussion).

To generate a catalogue of putative regulatory regions in each cell
type we applied afragment-level analysis across allsamples fromeach
celltype, independently of other cell types. We scanned the entire
genome and identified genomic regions in which at least 85% of DNA
fragments with at least four CpGs are unmethylated (Methods). This
identified aset of unmethylated genomic regionsineach of the 39 cell
type groups analysed, including 36,111 regions on average (Supple-
mentary Dataset 1). These regions were then annotated for genomic
features, showing that 56% on average overlapped CpG islands, 46%
were near promoter regions and 44% overlapped CTCF binding sites,
thus highlighting the regulatory and structural roles of unmethylated
loci. Whenavailable, we crossed these regions with chromatinimmuno-
precipitation sequencing (ChIP-seq) peaks from ENCODE® and Road-
map Epigenomics* under matching conditions, including H3K4me3,
H3K27ac, H3K4mel, H3K27me3, CTCF and ATAC-seq, and generated a
cell-type-specific catalogue of putative enhancer regions comprising
unmethylated regions that overlap H3K27ac, but not H3K4me3, peaks
(Supplementary Dataset 2). Motif analysis of these regions identified
key TFsin each cell type, similar to those shown in Fig. 4 (Supplemen-
tary Table 6b,c).

Cell-type-specifichypermethylated loci

We studied those genomic regions methylated in one cell type but
unmethylated elsewhere in the human body. These are enriched for
CpGislands (38% of methylated regions compared with 1.7-2.7% of
cell-type-specificunmethylated regions), and are marked by H3K27me3
and Polycomb in other cell types (Fig. 5a-c), as previously reported
for cancer and developmental processes*®*. These cell-type-specific
hypermethylated regions were generally less significant for motif
enrichment (compared with uniquely unmethylated regions).
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Intriguingly, only around 3% of the total set of cell-type-specific dif-
ferentially methylated regions are hypermethylated.

After pooling all cell-type-specific hypermethylated regions, we
identified strong enrichment for target sequences of the chroma-
tin regulator CTCF (P<1x107'%; Fig. 5d). This suggests that DNA
methylation of CTCF binding sites could act as a tissue-specific
regulatory switch to modulate its binding, potentially affecting
tissue-specific three-dimensional genomic organization®***, To
test this idea we compared patterns of DNA methylation at CTCF
sites with genome-wide CTCF protein binding in specific tissues.
Figure 5e shows the methylation pattern and published in vivo CTCF
occupancy at one locus, which is methylated specifically in the colon
and intestine. Consistent with DNA methylation preventing CTCF
binding, ChIP data show selective absence of CTCF binding at this
locusin the colon. In addition, loci methylated in specific cell types
were enriched for targets of the transcriptional repressor of neural
genes, RE1-silencing TF/neuron-restrictive silencer factor (REST/
NRSF) (P<1x10%*),and this was seen most prominently in the methy-
lome of pancreaticislet cells (Fig. 5f). Whereas DNA methylation has
notbeen shown to affect the binding or activity of REST, this finding
raises the intriguing possibility that methylation of REST targets in
islets could permit endocrine differentiationindependently of REST
repression.

Fragment-level methylome deconvolution

Last, we developed a computational fragment-level deconvolution
algorithm for DNA methylation sequencing data and used the top
25 markers defined for each cell type (atotal of 1,246 markers) to study
methylomes obtained from composite tissue samples and cfDNA.
Briefly, we generated an atlas in which the percentage of unmethyl-
ated fragments is computed for every marker (row) in each cell type
(column). Anon-negative least-squares (NNLS) algorithmis then used
tofitaninput sample and estimate its relative contributions (Supple-
mentary Information).

To estimate the accuracy of our fragment-level approach, we used
in silico mixtures of sequenced reads. For each cell type we applied a
leave-one-outapproach tomix one held-out sampleinleukocyte reads,
then used the deconvolution algorithm to infer cellular composition
in the mixture. We repeated this process at concentrations varying
from O to 10%. As shown in Fig. 6a, we found that the 1,246 markers
(top 25 per cell type) allowed accurate detection of DNA from agiven
source ataround 0.1% resolution, animprovement of nearly one order
of magnitude in comparison witharray-based approaches®. Four-way
insilicomixes, inwhichendothelial and hepatocyte methylomes were
alsoincluded to realistically mimic cfDNA composition, yielded similar
results (Extended Data Fig. 8).

Wethenestimated the cellular composition of leukocytes and cfDNA
using WGBS data from 23 healthy donors; 99.5% of leukocyte-derived
DNA was attributed to granulocytes, monocytes, macrophages and
NK, Tand B cells, consistent with typical blood counts (Fig. 6b and Sup-
plementary Table 8). The cfDNA of healthy subjects was mostly derived
fromleucocytes: granulocytes (29.7%), monocytes/macrophages (20%)
and lymphocytes (3%). Solid tissues contributing to cfDNA included
vascular endothelial cells (6%) and hepatocytes (3.1%) (Fig. 6¢), consist-
ent with previous results®®. The current atlas also shows a significant
contribution of megakaryocytes (31%) and erythrocyte progenitor
(prog.) cells (5%) to cfDNA, which were not observed in previous studies
that used reference methylomes of amore limited scope.

Endothelial cfDNA in patients with COVID-19

Analysis based on DNA methylation patterns offers an opportunity
to identify the tissue origins of cfDNA. COVID-19 inflicts damage to
multiple tissues, some of which have no biomarkers. We used the atlas
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todeconvolve shallow WGBS data from 52 patients hospitalized owing
to COVID-19 (ref. **). We identified excessive cell-free DNA fragments
from granulocytes, erythrocyte progenitors, lung and liver, consistent
with published analysis of these samples (Supplementary Information).
Strikingly, we also identified a significant contribution of vascular
endothelial cells to the cfDNA of these patients, which could not be
detected in the published analysis in the absence of an endothelial
cell methylome reference (Fig. 6d). Interestingly, the concentration
of endothelial cell-derived cfDNA was higher in patients with severe
disease (WHO score >7) compared with those with milder disease (WHO
score <6; P< 6 x107, Mann-Whitney). These results suggest that vas-
cular endothelial cell death plays asubstantial role in the pathogenesis
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of COVID-19, potentially related to coagulopathy, and highlight the
benefit of using a comprehensive cell-type-specific atlas for cfDNA
methylome analysis.

Cell type deconvolution of composite tissues

Finally, we analysed whole-genome methylomes from ENCODE® and
the Roadmap Epigenomics atlas* using our atlas (based on 25 markers
per cell type). Deconvolution of some methylomes showed a homog-
enous composition as intended—for example, 97-99% T cell DNA in
Roadmap T cellsamples (Supplementary Table 9). However, analysis of
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other samples showed a highly heterogeneous composition, as previ-
ously reported based on array-based bulk tissue deconvolution algo-
rithms such as EpiDISH and EpiScore™*"*, For example, heart ventricle
samples comprised 29% cardiomyocytes, 41% endothelial cells and 18%
cardiac fibroblasts (Fig. 6€); liver methylomes comprised around 60%
hepatocytes, 21%blood and 20% endothelial cells; and colon methylomes
comprised about 50% colon epithelium, 26% colon fibroblasts and 19%
blood. Most strikingly, Roadmap lung samples were dominated by blood
(40%), endothelium (34%) and smooth muscle (5%), with only 22% of DNA
derived fromlung epithelial cells (Fig. 6f-iand Supplementary Table 9).
Importantly, asimilar deconvolution of the 205 samples presented here
yielded anaverage contribution of 94% for the expected cell type for each
sample (median of 95%, Supplementary Table 10), or of 91% (median of
92%) in a more stringent leave-one-out cross-validation analysis (Sup-
plementary Table 11), highlighting the purity of collected samples.
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————————Pancreas alpha

(ref.**)identified endothelial-derived cfDNA in patients with WHO ordinal
scaleseven or higher (requiring admittance to intensive care unit).

e-i, Fragment-level deconvolution of Roadmap/ENCODE samples*®showing
cell-type-specific contributions. e, Heart ventricle samples contained a
mixture of cardiomyocytes, endothelial cells, fibroblasts and blood.f, Liver
samples contained around 60% of hepatocyte DNA, plus blood and endothelial
cells. g, Colonsamples contained approximately 50% epithelium, plus
fibroblasts and blood. h, Lung samples contained less than 30% of lung
epithelial cells. i, Pancreaticislet samples contained beta, alpha, ductand
acinar cells. Box plots denote median and IQR, with whiskers1.5x IQR.

Naturally, fragment-level analysis is limited to cell types for which
whole-genome sequencing data are available, and some cell types
can be analysed only by array-based algorithms>?%, Nonetheless, the
markers and algorithm presented here allow analysis of composite
bulk tissue and plasma samples, across multiple cell types and with
high accuracy.

Discussion

The comprehensive atlas of human cell type methylomes described
here shedslight on principles of DNA methylation and provides a valu-
ableresource for multiple lines of investigation, as well as translational
applications.

Our analysis used whole-genome sequencing data to show that
methylation patterns are strikingly similar among healthy replicates



ofthe same cell type from differentindividuals. The similarity between
individuals reflects the robustness of cell differentiation and mainte-
nance circuits, at least as far as healthy tissues are concerned. Patholo-
giesinvolving destabilization of the epigenome obviously disrupt these
circuits, resulting in a larger variety of methylation patterns among
cellsdescended from aspecific normal cell type. We predict that, even
in cancers (of the same primary anatomic site and histologic type),
comparative methylome analysis of purified epithelial cells, performed
at the level of methylation blocks, will show a smaller interindividual
variation than typically assumed.

As the atlas demonstrates, each cell type has a set of genomic
regions that are uniquely unmethylated in that cell type compared
with others, as well as additional genomic regions that share methyla-
tion patterns with related cell types. Using unsupervised clustering
of cell-type-specific methylomes, we found that cell types were clus-
tered in ways that reflected their developmental origins rather than
expression patterns. This offers a fascinating view of DNA methyla-
tion as arecord of the methylomes of progenitor cells, retained in the
genome through dramatic developmental transitions and decades of
life thereafter. We propose that comparative methylome analysis will
allow reconstruction of parts of the methylomes of fetal structures or
celltypes, similarly to thereconstruction of last common ancestorsin
evolutionary biology.

The vast majority of cell-type-specific differentially methylated
regions were specifically demethylated in one cell type. The chroma-
tin of these regions is typically highly accessible and bears histone
marks associated with active gene regulation, as found in enhancers
and promoters. Moreover, these loci are enriched for TF binding site
motifs that operatein that cell type. We devised anintegrated approach
that, based on distance and gene expression profiles, allowed us to
highlight potential target genes for these putative enhancer regions.
Many enhancer regions were associated with nearby genes that are
broadly expressed, potentially reflecting gene regulation by multiple
tissue-specific enhancers. Our findings are consistent with previous
studies that showed tissue-specific hypomethylation occurring at
gene enhancers® >, Our data-driven approach for marker identifica-
tionis complementary to recent gene-centric approaches*" that use
tissue-specific single-cell RNA sequencing data to define marker genes
andidentify neighbouring CpGs specifically unmethylated in target cell
types. Finally, we devised a fragment-level genomic analysis to identify
tens of thousands of unmethylated regions, per cell type, which were
annotated with genomic features, DNA accessibility, chromatin marks
and TF binding motifs to produce a cell type-specific catalogue of puta-
tive enhancers. Further analysis of this atlas will show and validate the
complete set of human enhancersin each cell type.

Conversely, we identified genomicregions specifically methylatedin
one ortwo celltypes, representing around 3% of cell-type-specific dif-
ferentially methylated regions. These are often located in CpGislands
and characterized by H3K27me3 and Polycomb binding in tissues where
the locus is not methylated*®*., This epigenetic repressive switching
was previously described in cancer and during early development**¢,
butitsrole during differentiation of specific cell types remains unclear.
Theseregions are enriched for CTCF binding sites, suggesting arole for
DNA methylation in attenuating the binding of CTCF and thus modu-
lation of the cell-type-specific, three-dimensional organization of
neighbouring DNA33647,

For DNA methylation sequencing data, the atlas described here
is, to our knowledge, the most comprehensive compendium to
date. We identified more than one thousand cell-type-unique DNA
methylation regions that could serve as accurate and specific biomark-
ers for fragment-level analysis and identification of cell death events
by monitoring of cfDNA. Notably, most of these marker regions are
not covered by 450K/EPIC BeadChip DNA methylation arrays, and
were not previously appreciated. To allow interpretation of array
data, we offer alternative sets of cell-type-specific markers limited

to CpGssites included in BeadChip 450K arrays. Similarly, we identi-
fied cell-type-specific markers in regions targeted by both RRBS and
hybrid capture panels (Extended Data Fig. 9 and Supplementary
Tables 12-17). As shown in Extended Data Fig. 10, the array-adapted
atlas allows high-resolution interpretation of array methylomes of
pancreatic islet, lung and breast biopsies, highlighting the presence
of cell types not previously profiled*$~°.

Many cell types are missing from the atlas, typically because
of limited availability of material. Examples include osteoblasts,
cholangiocytes, cells of the adrenal gland, urethral epithelium and
haematopoietic stem cells. Additionally, we did not separate many
subpopulations of interest—for example, different types of neurons or
lymphocytes. The atlas is viewed as aliving, publicly available database
tobeupdatedinthefuture. The resolution of the atlas yields a quanti-
tative understanding of composite tissues and allows one to identify
missing methylomes of additional cell types yet to be characterized.
We also acknowledge that the purity of the sorted cell populations
varies, owingto variationin the quality of antibodies used for FACS and
the extent to which they allow separation of cell types. Nonetheless,
eventheleast purecell typesin the atlas (for example, some prepara-
tions of vascular endothelial cells, fibroblasts, SMC and adipocytes
showing 70-80% purity), when averaged over replicates, are useful for
identification of differentially methylated regions and for inference
of cell composition in mixtures.

In summary, we present a comprehensive methylation atlas of pri-
mary human cell types along with an extensive set of cell-type-specific
markers and computation tools for fragment-level analysis of mixed cell
type samples. These complement the plethora of array-based methyl-
omes and deconvolution tools available for the analysis of array data.
Together, the datashed light on the roles of DNA methylationin cellular
biology and gene regulation and facilitate the identification of enhanc-
ers active in each cell type. Perhaps the most promising utility of our
atlas is the potential for fragment-level deconvolution of mixed cell
type samples, allowing sensitive identification of the tissue of origin of
cfDNA in plasma of individuals with cancer and other diseases'® 2530,
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Methods

Human tissue samples

Humantissues were obtained from various sources, as detailed in Sup-
plementary Table 1. The majority (148) of the 205 samples analysed
were sorted fromtissue remnants obtained at the time of routine, clini-
callyindicated surgical procedures at the Hadassah Medical Center. In
all cases, normal tissue distant from any known pathology was used.
Surgeons and/or pathologists were consulted before removal of tissue
to confirm that its removal would not compromise the final patho-
logic diagnosis in any way. For example, in patients undergoing right
colectomy for carcinoma of the caecum, the most distal part of the
ascending colon and most proximal part of the terminal ileum were
obtained for cell isolation. Normal bone marrow was obtained at the
time of joint replacement in patients with no known haematologic
pathology. The patient population included 135 individuals (n = 60
males, n =74 females) aged 3-83 years. The majority of donors were
White. Approval for collection of normal tissue remnants was provided
by the Institutional Review Board (IRB, Helsinki Committee), Hadas-
sah Medical Center, Jerusalem, Israel. Written informed consent was
obtained from each donor or legal guardian before surgery.

As describedin Supplementary Table 1, some cells and tissues were
obtained throughcollaborative arrangements: pancreatic exocrine and
liver samples (cadaveric organ donors, n=5) from M. Grompe, Oregon
Health & Science University; adipocytes (subcutaneous adipocytes at
time of cosmetic surgery following weight loss, n = 3), oligodendro-
cytes and neurons (brain autopsies, n =14) from K. L. Spalding and H.
Druid, Karolinska Institute, Stockholm; and research-grade cadaveric
pancreatic islets fromJ. Shapiro, University of Alberta (n=16). In all
cases, tissues were obtained and transferred in compliance with local
laws and after the approval of the local ethics committee on human
experimentation. Sixteen cell types were obtained from commercial
sources, including 15 from Lonza and one from Sigma-Aldrich. Three
pancreaticislet preparations were obtained from the Integrated Islet
Distribution Program (https://iidp.coh.org).

Tissue dissociation and FACS sorting of purified cell populations
Fresh tissue obtained at the time of surgery was trimmed to remove
extraneous tissue. Cells were dispersed using enzyme-based protocols
optimized for each tissue type. The resulting single-cell suspension
was incubated with the relevant antibodies and FACS sorted to obtain
the desired cell type (Extended Data Fig. 2 and Supplementary Infor-
mation).

Purity of live sorted cells was determined by messenger RNA analy-
sis for key known cell-type-specific genes, whereas the purity of cells
fixed before sorting was determined using previously validated
cell-type-specific methylation signals (Extended Data Fig. 2c and
Supplementary Information). DNA was extracted using the DNeasy
Blood and Tissue kit (no. 69504, Qiagen) according to the manufac-
turer’sinstructions, and stored at -20 °C for bisulfite conversion and
whole-genome sequencing.

WGBS

Up to 75 ng of sheared genomic DNA was subjected to bisulfite con-
version using the EZ-96 DNA Methylation Kit (Zymo Research), with
liquid handling onaMicroLab STAR (Hamilton). Dual-indexed sequenc-
ing libraries were prepared using Accel-NGS Methyl-Seq DNA library
preparationkits (Swift BioSciences) and custom liquid handling scripts
executed on the Hamilton MicroLab STAR. Libraries were quantified
using KAPA Library Quantification Kits for Illumina Platforms (Kapa
Biosystems). Four uniquely dual-indexed libraries, along with the 10%
PhiX v.3 library (Illumina), were pooled and clustered on an Illumina
NovaSeq 6000 S2 flow cell followed by 150 bp, paired-end sequenc-
ing. Total read count and average sequencing depth (in read pairs), as
well as percentage of CpGs, per sample, at 1x and 10x, are detailed in

Supplementary Table1. Also listed are average methylation levels, per
sample, at CpG, nonCpG and CC dinucleotides. Intriguingly, sorted
neuronsamples showed higher CpA methylation (approximately 10%)
compared with other samples (approximately 1%).

WGBS computational processing

Paired-end FASTQ files were mapped to the human (hgl9, hg38),lambda,
pUC19 and viral genomes using bwa-meth (v.0.2.0)* then converted to
BAM files using SAMtools (v.1.9)*. Duplicated reads were marked by
Sambamba (v.0.6.5) with parameters -11-t 16 --sort-buffer-size 16000
--overflow-list-size 10000000’ (ref.>*). Reads with low mapping qual-
ity, duplicated or not mapped in a proper pair were excluded using
SAMtools view with parameters ‘-F 1796 -q 10". Reads were stripped
fromnonCpG nucleotides and converted to PAT files using wgbstools
(v.0.1.0)*.

Genomic segmentation into multisample homogenous blocks
We developed and implemented a multichannel dynamic Pprogram-
ming segmentation algorithm to divide the genome into continuous
genomic regions (blocks), showing homogeneous methylation levels
across multiple CpGs for each sample®. A generative probabilistic model
isused, eachblockinducingaBernoullidistribution with some 9{(, where
iistheblockindexand kthe sampleindex (k=1,...,K),and each observa-
tion (occurence of one CpG at one sequenced fragment) is represented
by arandom variable sampled i.i.d. (independent and identically dis-
tributed) from the same beta value Ber 6. The log-likelihood of all
sequencing data is the sum of log-likelihoods across all blocks, each
decomposing as the sum of log-likelihoods across all samples. The
log-likelihood of the ith block can therefore be formalized as:

score(block) = ll,= £ _ (N x 1og(8) + (Np),* x log(1 - 6))

where (Nc)f, (NT)ik is the number of methylated and unmethylated
observations, respectively, in the ith block in the kth sample, whereas
6 marks a Bayes estimator of the Bernoulli distribution parameter,
calculated with a., a; pseudocounts for each block/sample:

6f = (NC)ik *ac
I (NC)ik + (NT)ik tactar

These hyperparameters are used for regularization, to control the
trade-off between overfitting (shorter blocks) and generalization
(longer blocks). Dynamic programming is then used to find the optimal
segmentation across the genome. Briefly, we maintainalx Ntable T
(N=28,217,448 CpGs) for optimal segmentation scores across all pre-
fixes. Specifically, T{i] holds the score of the optimal segmentation of
allCpGsitesfrom1throughtoi,and TIN]holds the final, optimal, score
across the entire genome. The tableitselfis updated sequentially from
1to N, where the optimal segmentation up to positioniis achieved by
the addition of a new block to a shorter optimal segmentation (for
example, up to position i’):

T[i1=max{T[i'] + score(block[i’+1,..., i)}

For this, all previous optimal segmentations are considered and a
new block is added from position (i’ + 1) to position i (with a maximal
block size of 5,000 bp). The combination that maximizes log-likelihood
isselected as the optimal segmentation from1toi, and the startindex
of the last block is recorded in a traceback table. Once the score of
optimal segmentationis calculated in T[V], the traceback table is used
toretrieve the full segmentation. An upper bound on block length
(5,000 bases) is set to improve running times and each chromosome
isrun separately. The linear distance between consecutive CpGs is
ignored under this model. The model and segmentation algorithm
are further described in Supplementary Information.
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Segmentation and clustering analysis

We segmented the genomeinto 7,104,162 blocks using wgbstools (with
parameters ‘segment --max_bp 5000’) with all of the 205 samples as
reference, and retained 2,099,681 blocks covering at least four CpGs.
For hierarchical clustering (Fig. 2) we selected the top 1% (20,997)
blocks showing the highest variability in average methylation across
allsamples. Blocks with sufficient coverage of at least ten observations
(calculated as sequenced CpG sites) across two-thirds of the samples
were further retained. We then computed the average methylation for
each block and sample calculated using wgbstools (--beta_to_table -c
10), marked blocks with fewer than ten observations as missing val-
ues and imputed their methylation values using sklearn KNNImputer
(v.0.24.2)%. The 205 samples were clustered with the unsupervised
agglomerative clustering algorithm??, using scipy (v.1.6.3)** and L1
norm. The fanning diagram was plotted using ggtree (v.2.2.4)"".

Cell-type-specific markers
The 205 atlas samples were divided into 51 groups by cell type, yield-
ing 39 basic groups and 12 composite supergroups (Supplementary
Table 3). We then performed a one-versus-all comparison to identify
differentially methylated blocks unique for each cell type. For this we
used wgbstools’ ‘find_markers’ function to firstidentify blocks cover-
ing at least five CpGs (length 10-1,500 bp) to calculate the average
methylation per block/sample and rank the blocks according to the
difference in average methylation between target samples versus all
other samples. To allow some flexibility, this difference was computed
(for unmethylated markers) as the difference between the 75th per-
centile in target samples (typically allowing one outlier) versus the
2.5th percentilein the background group (typically allowing about five
outlier samples). For methylated markers, this was computed as the
difference between the 25th and 97.5th percentiles (Supplementary
Information). Low-coverage blocks (fewer than 25 observations), in
which the estimation error of average methylation was around 10%,
were replaced by a default value of 0.5 which is neither unmethylated
nor methylated, thus reducing the block’s methylation difference and
downgradingits rank. For cell type-specific markers we selected the top
25percelltype, foratotal of 1,246 markers (Supplementary Table 4a).
Atlases for 450K/EPIC, RRBS and hybrid capture panels were identi-
fied similarly while examining a subset of genomic regions, overlap-
ping various probe sets or genomic regions (-b option). Chromatin
analysis was performed on the top 250 markers per cell type (total of
11,713 markers; Supplementary Table 4b). Motif analysis was performed
on the top 1,000 markers per cell type (total of 50,286 markers; Sup-
plementary Table 4b) using the difference between the 25th and 75th
percentile, to allow putative enhancers unmethylated in additional
celltypes.

Enrichment for gene set annotations

Analysis of gene set enrichment was performed using GREAT®.. For each
cell type we selected the top 250 differentially unmethylated regions
and ran GREAT viabatch webinterface using default parameters. Enrich-
ments for ‘Ensembl Genes’ wereignored, and asignificance threshold
of binomial false discovery rate <0.05 was used.

Enrichment for chromatin marks

Foreach cell type we analysed the top 250 differentially unmethylated
regions versus published ChIP-seq (H3K27ac and H3K4mel) and DNase
sequencing fromthe Roadmap Epigenomics project (dlownloaded from
ftp.ncbi.nlm.nih.gov/pub/geo/DATA/roadmapepigenomics/by_experi-
ment and http://egg2.wustl.edu/roadmap/data/byDataType/dnase/
BED files_enh) in bigWigand bed formats. Theseinclude EO32for B cell
markers, EO34 for T cell markers, E029 for monocyte/macrophage
markers, EO66 for liver hepatocytes, E104 for heart cardiomyocytes
and fibroblasts and F109 and E110 for gastric/small intestine/colon®.

Annotations for chromHMM were downloaded (15-states version) from
https://egg2.wustl.edu/roadmap/data/byFileType/chromhmmSeg-
mentations/ChmmModels/coreMarks/jointModel/final®, and genomic
regions annotated as enhancers (7_Enh) were extracted and reformat-
tedinbigWig format. Raw single-cell ATAC-seq datawere downloaded
from GEO GSE165659 (ref.*?) as ‘feature’ and ‘matrix’ files for 70 sam-
ples. For each sample, cells of the same type were pooled to output a
bedGraphfile, which was mapped from hg38 to hg19 using UCSCliftO-
ver®, Overlapping regions were dropped using bedtools (v.2.26.0)%.
Finally, bigWig files were created using bedGraphToBigWig (v.4)°.
Heatmaps and average plots were prepared using deepTools (v.3.4.1)¢,
with the functions ‘computeMatrix’, ‘plotHeatmap’ and ‘plotProfile’.
We used default parameters except for ‘referencePoint=center’, 15 kb
margins and ‘binSize=200’ for ChIP-seq, DNasel and chromHMM data,
and 75 kb margins with ‘binSize=1000’ for ATAC-seq data.

Motif analysis

For each cell type we analysed the top 1,000 differentially unmethyl-
ated regions for known motifs (Supplementary Table 6a) using the
HOMER function ‘findMotifsGenome.pl’, with parameters *-bits’ and
“-size 250’*, Similar analyses were performed for the unmethylated
regionsineach cell type (Supplementary Table 6b), as well as unmeth-
ylated regions overlapping H3K27ac, but not H3K4me3, peaks (Sup-
plementary Table 6c¢).

Methylation marker-gene associations

For each cell-type-specific marker weidentified all neighbouring genes
up to 500 kb apart. We then examined the expression levels of these
genes across the GTEx dataset covering 50 tissues and cell types®>. We
then standardized the expression of each gene across all conditions,
by replacing expression values with standard deviations (z-scores)
above/below the average expression of that gene across samples. This
was followed by column-wise standardization in which the relative
enrichment of a gene under a given condition is normalized by the
enrichment of other genes under that condition. This highlighted the
most overexpressed genes for each tissue. We then classified each
‘marker-gene-condition’ combination as tier 1: distance <5 kb, expres-
sion =10 TPM and z-score 21.5; tier 2: same as tier 1 but with distance
<50 kb; tier 3: up to 750 kb, expression =25 TPM and z-score =5; and
tier 4: same as tier 3 but with z-score >3.5.

A catalogue of unmethylated loci and putative enhancers for
eachcell type

Foreach genomicregion (blocks of atleast four CpGs), and for any of the
39 celltype groups, fragments with at least four CpGs from all replicates
were merged and classified as either U (fragment-level methylation 15%
orless), M (atleast 85%) or X (over 15% but below 85%). The percentage
of U fragments was then calculated using ‘wgbstools homog --threshold
.15,.85, and blocks with at least 85% unmethylated fragments retained.
These blocks were overlapped with genomic features based on UCSC
hgl9 annotations, including CpGislands and transcriptional start site
regions (up to 1kb from a gene start site). We also used narrowPeak
annotations downloaded from Roadmap*and ENCODE project® (acces-
sions listed inSupplementary Table 6d). hg38 bed files were converted
to hgl9 using liftOver®, For putative enhancers, nonpromoter active
regulatory regions were defined as those overlapping H3K27ac, but
not H3K4me3, peaks under matching conditions. TF binding sites were
downloaded fromJASPAR 2022 (ref. %3).

Interindividual variationin cell type methylation

We define a similarity score between two samples as the fraction of
blocks containing at least three CpGs and at least ten binary observa-
tions (sequenced CpG sites) in which the average methylation of the
two samples differs by atleast 0.5. Only cell types with n > 3FACS-sorted
replicates from different donors are considered (136 samplesintotal).
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CTCF ChIP-seq analysis

CTCF ChIP-seq data were downloaded from the ENCODE project® as
168 bigWig files, covering 61 tissues/cell types (hgl9). Samples of the
same cell type were averaged using multiBigwigSummary (v.3.4.1).

Endodermal marker analysis

All 892 endodermal hypomethylated markers were found using wgb-
stools function ‘find_markers’ (v.0.2.0), with parameters ‘--delta_quants
0.4--tg_quant 0.1--bg_quant 0.1’ (ref.>*). For endoderm-derived epithe-
lium, 51 samples were compared with103 nonepithelial samples from
mesoderm or ectoderm. Blocks were selected as markersifthe average
methylation of the 90th percentile of the epithelial samples was lower
than the tenth percentile of the nonepithelial samples by at least 0.4.

UXM fragment-level deconvolution algorithm

We developed afragment-level deconvolution algorithm: each fragment
was annotated as U (mostly unmethylated), M (mostly methylated) or
X (mixed) depending on the number of methylated and unmethylated
CpGs®*. We then calculated, for each genomic region (marker) and across
all cell types, the proportion of U/X/M fragments with at least k CpGs.
Here we used k =4 and thresholds of less than or equal to 25% methylated
CpGs for U reads, and more than or equal to 75% methylated CpGs for
M reads. We then constructed reference atlas A with 1,232 regions (top
25 markers per cell type), inwhich the A, ;cell holds the U proportion of
the ith marker in thejth cell type. Given an input sample, the U propor-
tionateach markeriscomputedtoforma1,232 x 1vector b. Then, NNLS
is applied to infer coefficient vector xby minimizing|A x x - b|, subject
tonon-negativex, normalized to Xx; = 1. Alternatively, each marker can
be weighed differently based on fragment coverage in theinput sample.
For this, b can be defined as the number of U fragments in each region
and the rows of A similarly multiplied by Ci, the total number of fragments
ineachregion, thus minimizing|diag(C) x A x x - b| . Additional details
areavailable in Supplementary Information.

Insilico simulation of WGBS deconvolution

Simulated mixtures were performed for cardiomyocytes (n = 4), blad-
derepithelium (n =5), breast epithelium (n = 7), endothelial cells (n = 19)
and erythrocyte progenitors (n = 3) in a leave-one-out manner. For
this, one sample was held out and segmentation and marker selec-
tion (25 per cell type) were rerun using the remaining 204 samples.
We then simulated mixtures by sampling and mixing reads from the
held-out sample at10, 3,1, 0.3, 0.1, 0.03 and 0% into a background of
leukocyte samples. This was repeated ten times. Finally, mixed samples
were analysed using the UXM fragment-level algorithm with mark-
ers from the reduced (204) atlas, using fragments with at least three
CpGs. Merging, splitting and mixing of reads were performed using
wgbstools (v.0.1.0)%.

Array-based analysis was performed by computing, for each mixed
set of fragments, average methylation levels across each of around
480,000 CpGsites presentinthe 450K array (‘wgbstools beta_to_450k’).
We then deconvolved these data according to the method of Moss et
al.?® (https://github.com/nloyfer/meth_atlas).

We also simulated four-way mixtures in which background plasma
methylomes were simulated as acombination of 90% fragments from
leukocytes, 7.5% from a vascular endothelial sample and 2.5% from a
hepatocyte sample. As described above, this was done by holding out
the three samples (for example, cardiomyocytes, endothelial cellsand
hepatocytes) and then rererunning segmentation and marker selection
onthe (202 =205 - 3) remaining samples, to obtain a set of markers that
was then used for fragment-level deconvolution of mixtures.

WGBS deconvolution
Leukocytes and matching plasma samples (n = 23) were processed
as described above and analysed using the WGBS methylation atlas,

including 1,246 markers plus (for plasma samples) an additional
25 megakaryocyte markers. Fifty-two plasma samples from 28 patients
with SARS-CoV-2 (ref. **) downloaded as FASTQ files were processed as
described above. Because of the low coverage (1-2x) of these samples,
we extended the marker set from the top 25 to the top 250 markers per
celltype (Supplementary Table 4b), and also included 250 megakaryo-
cyte markers®. Roadmap* and ENCODE® samples were processed as
described above and analysed using the UXM algorithm.

Deconvolution of 450K array data

Previously published 450K array datawere downloaded fromeither The
Cancer Genome Atlas (lung and breast biopsies)**° or GEO accession
no. GSE62640 (ref.*®) and deconvoluted with meth_atlas NNLS software
(https://github.com/nloyfer/meth_atlas) using our array-adapted atlas
(Supplementary Table 12). Breast biopsies were grouped using PAM50
classifications®.

Reporting summary
Furtherinformation onresearch designisavailablein the Nature Port-
folio Reporting Summary linked to this article.

Data availability

DNA methylation data are available in formats bigWig (position
and average methylation across 28,217,448 CpGs) and beta (a
similar wgbstools-compatible binary format) at GEO (accession
no. GSE186458). BigWig and beta files for hg38 are also available.
Fragment-level information (in pat format, including CpG starting
index, methylation pattern of all covered CpGs and number of frag-
ments with exact multiCpG pattern) are also available. Raw fastq files
have beendeposited at the European Genome-phenome Archive (EGA)
under study accession number: EGAS0O0001006791 and can be down-
loaded uponrequest to EGA (through the atlas Data Access Committee).

Code availability

Code is available at github.com/nloyfer/wgbs_tools and github.com/
nloyfer/UXM_deconv.
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Extended DataFig.2|Sample preparation and purity. (A) Fresh tissue was
obtained at surgery and dissociated (optimized per tissue type), thenincubated
with antibodies, and FACS-sorted. Sorted cells were analysed using qRT-PCR
for key cell-type-specific genes, or targeted PCR for cell-type-specific DNA
methylation markers.DNA methylation was also analysed using whole-genome
bisulfite sequencing. (B) Example of FACS sorting for pancreatic endocrine cell
types. Left panel: staining for the beta cell marker C-peptide (x-axis) versus
alphacell marker glucagon (y-axis). Note that no double positive cells are
observed. Centre panel: staining for c-peptide (x-axis) versus delta cell marker
somatostatin (y-axis). Right panel: unstained control (only fluorescent
secondary antibodiesadded, no primary antibodies). (C) Fragment-level
validation of sample purity using targeted PCR. Cell-type-specific markers
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were designed using pre-existing 450K data, covering 4-7 several neighbouring
CpGs.Shownisthe percentage of unmethylated moleculesineach cell type
(including endothelial cells and leukocytes). Colour gradient fades from fully
unmethylated molecules (allT), through those unmethylatedin allbut one CpG
(allT-1), etc. Amplicon locations are reported in hgl9, for acinar cells, alpha,
beta, delta, duct, and endothelial markers (from left to right). (D) Fragment-
level validation of the same locations, using the atlas WGBS data. Y-axis marks
the percentage of unmethylated fragments (with 24 CpGs). As these markers
show, approximately 90% of moleculesin that target cell type are unmethylated,
compared withless than 5% in other cell types, thusemphasizing the purity of
the DNA methylation atlas using aset ofindependently selected DMRs.
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Extended DataFig. 3 | Purity estimation for pancreas, lung, heart, liver,
breast, and Gl using atlas markers. The percent of unmethylated fragments
(y-axis) among fragments of >4 CpGs from selected differentially methylation
markers could serveas an (under-) estimate of the atlas purity. Here we show
onesuchmarker for each celltype, selected from the top 25 markers, and use
fragment-level analysis to demonstrate the purity in the target cell type

comparedtoother celltypes from the same tissue or environment. (A) Pancreas.
(B) Lung. (C) Heart. (D) Liver. (E) Breast. (F) Gl tract. For most cell types, 90%
ofthe moleculesinthe target cell types are unmethylated, compared with less
than 5% of other types. Thisisanunder-estimation, assome heterogeneity
could occurineachcelltype, reflecting stochastic noise, cellular states, age,
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37 cell types, 136 samples

50% (absolute deltabeta), across replicates (shown as Y-axis). Nearly all cellular

Extended DataFig. 4 |Biological replicates of the same cell type, from
differentindividuals show asurprisingly low rate of differentially

subtypes (36/37) differ by <0.5% of blocks suggesting a very high degree of

conservationamongreplicates. Dotted red line marks the average number of
differential blocks between two random samples of different cell types (4.9%).
Box plots mark median and interquartile range (IQR), with 1.5*IQR whiskers.

methylated blocks. We focused on 37 cellular subtypes with n=3 replicates

(e.g.endothelial cells fromaspecific tissue) and measured the average

percentage of methylation blocks (=3 CpGs) that differ in their methylation by
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Extended DataFig. 6 | Marker specificity across 953 cell-type-specific fragments (=3 CpGs) inthe target samples (blue dots) versus their percentage
markers. Forevery cell type (row), we plot each ofthe top 25 markers (shown inbackground samples (golden dots). Blue and golden bars plot the average
asboxes). For each marker, we compare the percentage of unmethylated proportionacrossall target and background samples, respectively.
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Extended DataFig.7 | Markers of putative enhancersin other atlascell
types. Including top 250 unmethylated markers for B cells (top left),
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vascular endothelial cells,and 2.5% hepatocytes. Each mixture was analysed
using our atlas (red), and compared to Moss et al. (grey). Box plots show
average contributionin10 simulations, with1SD error bars.

insilico simulations for four cell types, which are computationally mixed at
various proportions with a plasma-like mixture of 90% leukocytes, 7.5%
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Extended DataFig.10 | Deconvolution of previously published 450K DNA
methylation array data. (A) Deconvolution of pancreaticislet methylomes.
Methylation arrays from 53 male and 34 female non-diabetic donors* were
analysed atlas methylomes, revealing detailed cellular compositionincluding
previously uncharacterized alphaand delta cells. No statisticaly significant sex
differencesin cellular composition were observed. (B) Analysis of 865
pulmonary methylomes from TCGA*’. WGBS-based markers for lung alveolar
epithelium and lung bronchial epithelium cells reveal differential cell
populationsin443 LUAD,11SCLC, 337 LUSC, 32 normal adjacent (LUAD), and 42
normaladjacent (LUSC) lung methylomes. Note that only alveolar cel| DNA is
identified inlung adenocarcinomas, while small cell lung cancer and squamous
cell carcinomas contain also bronchial DNA, consistent with the presumed
cellular origins of each type of lung cancer. Note that epithelial cellsare a

minority inbothlungadenocarcinomaand normallungs. Thisis probably due
to the abundance of stromal cellsin bulk preparations of either normal lungs or
lung cancers. (C) DNA methylation from 721 cancerous and 97 normal breast
biopsies from TCGA. WGBS-based markers for breast luminal and basal
epithelial cells were used to study the cellular compositionin TCGA®, which
were classified into five subtypes using PAMS50, a 50-gene expression-based
classification®®. Different cell compositionis observed for normal-like, basal-
like, luminal A, luminal B, and Her2-enriched PAMS50 subtypes, compared to
healthy breast biopsies. The low fraction of breast basal cellsinbreast cancer is
likely to result from the abundance of non-epithelial cellsin both the normal
breastand breast cancer. Box plots mark median and interquartile range (IQR),
with1.5*IQR whiskers.
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Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

Confirmed
IZ The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

< The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested
A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X’ A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
N Gjve P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

000 0 O00000%

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection  no software was used

Data analysis bedtools (v 2.26.0)
bedGraphToBigWig (V 4)
deepTools (V 3.4.1)
multiBigwigSummary(V 3.4.1)
bwa-meth (V 0.2.0)
SAMtools (V 1.9)
Sambamba (V 0.6.5)
wgbstools (V 0.1.0)
sklearn KNNImputer (V 0.24.2)
scipy (V 1.6.3)
ggtree (V 2.2.4)
GREAT (V 4.0.4, https://great.stanford.edu/)
HOMER findMotifsGenome.pl (V2)
wgbstools (v 0.1.0, https://github.com/nloyfer/wgbs_tools)
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Code is available at github.com/nloyfer/wgbs_tools and github.com/nloyfer/UXM_deconv

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Portfolio guidelines for submitting code & software for further information.




Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:
- Accession codes, unique identifiers, or web links for publicly available datasets
- A description of any restrictions on data availability
- For clinical datasets or third party data, please ensure that the statement adheres to our policy

DNA methylation data is available in bigwig format (position and average methylation across 27,927,160 CpGs), and beta format (a similar wgb tools-compatible
binary format) at the GEO, accession GSE186458. Bigwig and beta files for hg38 are also available. Fragment-level information (in pat format, including CpG starting
index, methylation pattern of all covered CpGs, and number of fragments with this exact multi-CpG pattern) are also available. Raw fastq can be downloaded upon
request to EGA (through the atlas Data Access Committee).

Human research participants

Policy information about studies involving human research participants and Sex and Gender in Research.

Reporting on sex and gender No gender-related data was collected. Sex data is detailed in Extended Table S1

Population characteristics We used >200 tissue specimens from consented patients admitted to surgery at Hadassah Medical Center. Detailed
information on donors is provided in Extended Table S1.

Recruitment This is not a population-based study. We are defining tissue-specific methylation patterns that are universally conserved
among all individuals. Prospective donors were approached, received an explanation and signed informed consent.

Ethics oversight Study was approved by the Helsinki committee of the Hadassah Medical Center. Some cells and tissues were obtained
through collaborative arrangements (Extended Table S1). These include pancreatic exocrine and liver samples (cadaveric
organ donors, n=5) from Prof. Markus Grompe, Oregon Health & Science University. Adipocytes (subcutaneous adipocytes at
time of cosmetic surgery following weight loss; n=3), oligodendrocytes and neurons (brain autopsies, n=14) from Profs. Kirsty
L. Spalding and Henrik Druid, Karolinska Institute, Stockholm, and research grade cadaveric pancreatic islets from Prof. James
Shapiro, University of Alberta (n=16). In all cases tissues were obtained and transferred in compliance with local laws and
after the approval of the local ethics committee on human experimentation. Sixteen cell types were obtained from
commercial sources, including 15 from Lonza Walkersville, Walkersville, MD, U.S.A. and one from Sigma Aldrich. Three
pancreatic islet preparations were obtained from the Integrated Islet Distribution Program (IIDP, https://iidp.coh.org).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

|X| Life sciences |:| Behavioural & social sciences |:| Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size Based on sample availibility
Data exclusions  Healthy samples, Low sequencing coverage
Replication Yes, across individuals. We define a similarity score between two samples as the fraction of blocks containing 23 CpGs, and 210 binary
observations (sequenced CpG sites), where the average methylation of the two samples differs by >0.5. Only cell types with n>3 FACS-sorted
replicates from different donors are considered (136 samples in total).

Randomization  N/A

Blinding Not relevant

Reporting for specific materials, systems and methods
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We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [] chip-seq
Eukaryotic cell lines |:| Flow cytometry
Palaeontology and archaeology |Z |:| MRI-based neuroimaging

Animals and other organisms
Clinical data

Dual use research of concern
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Antibodies
Antibodies used Attached table S1
Validation Described in attached file "Supplementary Information"

Flow Cytometry

Plots

Confirm that:
|Z| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

g The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
Sample preparation Described in file "Supplementary Information"
Instrument FACS BD Aria
Software BD FACSDiva 8.0.1
Cell population abundance Described in file "Supplementary Information"
Gating strategy Described in file "Supplementary Information"

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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