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Grey Wolf Optimization algorithm 
based on Cauchy‑Gaussian 
mutation and improved search 
strategy
Kewen Li*, Shaohui Li, Zongchao Huang, Min Zhang & Zhifeng Xu

The traditional Grey Wolf Optimization algorithm (GWO) has received widespread attention due to 
features of strong convergence performance, few parameters, and easy implementation. However, in 
actual optimization projects, there are problems of slow convergence speed and easy to fall into local 
optimal solution. The paper proposed a Grey Wolf Optimization algorithm based on Cauchy‑Gaussian 
mutation and improved search strategy (CG‑GWO) in response to the above problems. The Cauchy‑
Gaussian mutation operator is introduced to increase the population diversity of the leader wolves and 
improve the global search ability of the algorithm. This work retains outstanding grey wolf individuals 
through the greedy selection mechanism to ensure the convergence speed of the algorithm. An 
improved search strategy was proposed to expand the optimization space of the algorithm and 
improve the convergence accuracy. Experiments are performed with 16 benchmark functions 
covering unimodal functions, multimodal functions, and fixed‑dimension multimodal functions 
to verify the effectiveness of the algorithm. Experimental results show that compared with four 
classic optimization algorithms, particle swarm optimization algorithm (PSO), whale optimization 
algorithm (WOA), sparrow optimization algorithm (SSA), and farmland fertility algorithm (FFA), the 
CG‑GWO algorithm shows better convergence accuracy, convergence speed, and global search ability. 
The proposed algorithm shows the same better performance compared with a series of improved 
algorithms such as the improved grey wolf algorithm (IGWO), modified Grey Wolf Optimization 
algorithm (mGWO), and the Grey Wolf Optimization algorithm inspired by enhanced leadership 
(GLF‑GWO).

In recent years, swarm intelligence optimization algorithms have been widely applied to optimization problems in 
various fields due to their flexibility, high robustness, and simple implementation. They are mainly implemented 
by simulating the predation, migration and other behaviors of various creatures in nature, including Grey Wolf 
Optimization  algorithm1 (GWO), particle swarm optimization  algorithm2 (PSO), whale optimization  algorithm3 
(WOA), and sparrow optimization  algorithm4 (SSA), etc. Optimization algorithms can effectively improve system 
efficiency, reduce energy consumption, and help optimizers to use resources rationally. At the same time, this 
effect becomes more obvious as the scale of optimization problems increase.

The grey wolf optimizer (GWO) is a swarm intelligence optimization algorithm proposed by Mirjalili et al. 
in 2014, which simulates the group behavior of grey wolves preying on prey and the leadership mechanism. The 
algorithm is widely used in parameter  optimization5–7, knapsack  problem8,9, economic scheduling  problem10–12, 
shop scheduling  problem13,14, fault  diagnosis15–17, feature  selection18–20, image  processing21–23 and many other 
fields due to its features of few parameters and easy implementation. However, in actual optimization projects, 
the GWO algorithm has problems of slow convergence speed, insufficient global search ability, and easy to fall 
into local optimal solution, which has attracted the attention of many scholars and launched a series of stud-
ies on Grey Wolf Optimization algorithm. Wen Long et al.24 proposed an improved Grey Wolf Optimization 
algorithm IGWO inspired by particle swarm optimization. The algorithm adds a nonlinear adjustment strategy 
of the control parameters and a modified position-updating equation based on the personal historical best 
position and the global best position. Experimental results showed that the algorithm could find more accu-
rate solutions, had a higher convergence speed and fewer fitness function evaluation times. Mittal et al.25 paid 
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attention to the proper balance between local search and global search of the GWO algorithm. They proposed 
the mGWO algorithm by changing the parameter adjustment strategy. Based on the benchmark problems and 
the WSN clustering problem, it was verified that the algorithm converged fast and had fewer opportunities to 
get stuck at local minima. The algorithm was very effective for practical applications. Gupta et al.26 proposed a 
Grey Wolf Optimization algorithm GLF-GWO inspired by enhanced leadership. They introduced Levy-flight 
search mechanism to update the leaders and enhanced the local search ability of the algorithm through the greedy 
selection mechanism. Experimental results showed that GLF-GWO algorithm had better global search ability to 
avoid falling into local optimum. Bansal et al.27 introduced inverse learning (OBL) to improve the exploration 
ability of traditional Grey Wolf Optimization algorithm. The proposed algorithm effectively deals with optimiza-
tion stagnation problems and maintains faster convergence speed. The effectiveness of the algorithm had been 
proved by experiments. Mirjalili et al.28 integrated the archive mechanism and the leader selection mechanism 
based on the traditional Grey Wolf Optimization algorithm in 2016 and proposed the multi-objective Grey Wolf 
Optimization algorithm (MOGWO). They experimented on 10 multi-objective benchmark problems to compare 
with the decomposition-based multi-objective evolutionary algorithm and multi-objective particle swarm algo-
rithm. Experimental results showed that the proposed algorithm was more competitive.  Gharehchopogh29 used 
Gaussian mutation, Cauchy mutation, and Levy fight to increase the global search capability of TSA algorithm. 
Also, QLGCTSA combines the quantum rotation gate to enhance local search capabilities and increase popula-
tion diversity. Experimental results showed that the QLGCTSA algorithm had outperformed other competing 
optimization algorithms. The QLGCTSA algorithm is very helpful for our research work. We also used the 
Cauchy mutation and Gaussian mutation. The differences are as follows: QLGCTSA applied mutation operators 
to all search agents, while CG-GWO applied the Cauchy-Gaussian mutation to leader wolves. QLGCTSA used 
mutation operators to improve the global search ability, while CG-GWO used mutation operator to enhance the 
local search ability and avoid falling into the local optimum. To better clarify the research gaps, we compared 
the algorithms mentioned above as shown in Table 1.

Because there are problems of slow convergence speed and easy to fall into local optimal solution in the Grey 
Wolf Optimization algorithm, Grey Wolf Optimization algorithm based on Cauchy-Gaussian mutation and 
improved search strategy is proposed. The main contributions are as follows:

• We design the Cauchy-Gaussian mutation operator, which acts on the leader wolves. The search range can 
be increased when the leader wolves tend to the local optimal solution. The operator can effectively improve 
the local development ability of the leader wolves and avoid falling into the local optimum.

• We propose a greedy selection  mechanism30, whose main function is to avoid the high diversity of the popula-
tion caused by variation. The greedy selection mechanism can maintain the diversity of the population and 
ensure the convergence speed of the algorithm.

• We design an improved search strategy to apply to all grey wolf individuals. This strategy considers the aver-
age position of all individuals, which can effectively expand the search space and improve the global search 
ability of the algorithm.

The rest of this paper is organized as follows: section “Classical Grey Wolf optimizer” provides a brief over-
view of classical GWO. In section “Proposed method”, the proposed improved algorithm called CG–GWO is 
discussed in detail. Section “Experimental simulation and result analysis” presents the numerical experimenta-
tion and discussion on convergence accuracy, convergence speed, algorithm performance, algorithm runtime 
and case study of real-world application. The conclusion and future works are presented in section “Conclusion 
and future works”.

Table 1.  A summary of popular algorithms.

Algorithm References Improvements

Improved Grey Wolf Optimization algorithm (IGWO) Wen Long et al.24
Nonlinear adjustment strategy of the control parameters

Modified position-updating equation based on the personal historical best 
position and the global best position

Modified Grey Wolf Optimization algorithm (mGWO) Mittal et al.25
Pay attention to the proper balance between local search and global search

Change the parameter adjustment strategy

Enhanced leadership-inspired Grey Wolf Optimization algorithm (GLF-GWO) Gupta et al.26
Levy-flight search mechanism

Greedy selection mechanism

Opposition-based learning Grey Wolf Optimization algorithm (OBL-GWO) Bansal et al.27 Opposition-based learning

Multi-Objective grey wolf optimizer (MOGWO) Mirjalili et al.28
Archive mechanism

Leader selection mechanism

An improved tunicate swarm algorithm with best-random mutation strategy 
(QLGCTSA) Gharehchopogh29

Gaussian mutation

Cauchy mutation

Levy-flight search mechanism

Quantum rotation gate
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Classical Grey Wolf optimizer
Grey Wolf social hierarchy. The social hierarchy in the grey wolf population is divided into four levels as 
shown in Fig. 1. The first level is called α wolf, which plays the role of decision maker in the wolves. The wolf has 
management ability and corresponds to the optimal solution in GWO. The second and third levels are called β 
wolf and δ wolf respectively, corresponding to the sub-optimal and third-optimal solutions in GWO. They are 
mainly responsible for assisting α wolf in decision-making, jointly leading and assisting other wolves to keep 
approaching their prey. The fourth level is called ω wolf, which represents other solutions in the optimization 
process, and updates the position by following the decisions of α, β and δ  wolves31. During the algorithm itera-
tion, grey wolf individuals of all levels are in a state of competition. After each iteration, the leader wolves must 
be reselected according to the distance between each grey wolf and the prey.

Position update. The position update of α, β and δ wolves in the grey wolf population depends on the posi-
tion of the prey, as shown in formula (1).

where X(t + 1) represents the position of grey wolf after the update, Xp(t) represents the position of the prey, A 
is the coefficient vector, and D represents the distance between a grey wolf and the prey.

where X(t) represents the current position of grey wolf, C is the coefficient vector, α decreases linearly from 2 to 
0 over the course of iterations, and r1, r2 are random vectors in [0,1].

According to the social hierarchy of grey wolves, ω wolves depend on the leader wolves to update the position. 
The distance between ω wolves and each leader wolves is calculated by formula (5), and finally the direction of 
movement of the grey wolf individual is determined according to formulas (6) and (7).

where Xα ,Xβ ,Xδ represent positions of α, β and δ wolves respectively, X is the current position of the grey wolf 
individual Dα ,Dβ ,Dδ represent the distance between the grey wolf individual and each leader wolves respectively, 
and X(t + 1) is the position of grey wolf after updating.

Algorithm flow. The pseudo code of the traditional GWO algorithm is shown in Fig. 2.

Proposed method
Cauchy‑Gaussian mutation. In the later iterations of the traditional GWO algorithm, grey wolves gradu-
ally move closer to α wolf, which results in a lack of diversity in the local search of the population and the algo-
rithm tends to converge prematurely. This work introduces the Cauchy-Gaussian mutation operator to improve 

(1)X(t + 1) = Xp(t)− A · D

(2)D = |C · Xp(t)− X(t)|

(3)C = 2 · r1

(4)A = 2a · r2 − a

(5)







Dα = |C1 · Xα − X|

Dβ = |C2 · Xβ − X|

Dδ = |C3 · Xδ − X|

(6)







X1 = Xα − A1 · Dα

X2 = Xβ − A2 · Dβ

X3 = Xδ − A3 · Dδ

(7)X(t + 1) =
X1 + X2 + X3

3

Figure 1.  Grey Wolf social hierarchy.



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18961  | https://doi.org/10.1038/s41598-022-23713-9

www.nature.com/scientificreports/

the diversity of leader wolves and enhance the local search ability in order to solve above problem. After each 
iteration, α, β and δ wolves are selected for mutation. The mutation and original position are compared based 
on the greedy selection mechanism. Individuals with better fitness are selected to enter the next iteration. The 
mathematical definition of the Cauchy-Gaussian mutation strategy is described as follows:

where Uleader(t + 1) represents the post-mutation position of leader wolves, Xleader represents the current position 
of leader wolves, cauchy(0, σ 2) is random variables satisfying the Cauchy distribution,Gauss(0, σ 2) is random 
variables satisfying the Gaussian distribution, f (Xleader) represents the fitness value of leader wolves, f (Xα) 
represents the fitness value of α wolf, and �1, �2 are dynamic parameters adaptively adjusted with the number 
of iterations.

where t represents the current iteration number, and T represents the maximum number of iterations.

Improved search strategy. The traditional GWO algorithm has a small number of parameters in the 
search process and is easy to implement. But the global search ability of the algorithm is weak, resulting in fall-
ing into a local optimum in some cases easily. This work proposes an improved search strategy to improve the 
global search ability of the algorithm and expand the search space. The global search space is expanded under the 
condition that the current grey wolf individual position X(t) is generated based on the traditional GWO position 
update formula (7). The mathematical definition is described as follows:

where U(t + 1) represents the position of grey wolf individual after through improved search strategy,Xrand(t) 
represents the position of grey wolf individual that is randomly selected from the population at the tth itera-
tion,X(t) represents the current position of grey wolf individual,r1, r2, r3, r4, r5 are random vectors in [0,1],Xα(t) 
represents the current position of α wolf,Xavg (t) represents the average position of the grey wolf population in 
the current iteration, and ub, lb are upper and lower bounds of decision variables.

(8)Uleader(t + 1) = Xleader

[

1+ �1cauchy
(

0, σ 2
)

+ �2Gauss
(

0, σ 2
)]

(9)σ = exp

(

f (Xleader)− f (Xα)

|f (Xα)|

)

(10)X(t + 1) =

{

Uleader(t + 1)f (Uleader(t + 1)) ≤ f (Xleader)

Xleaderotherwise

(11)�1 = 1−
t2

T2

(12)�2 =
t2

T2

(13)U(t + 1) =

{

Xrand(t)− r1 × |Xrand(t)− 2× r2 × X(t)|, r5 ≥ 0.5

Xα(t)− Xavg (t)− r3 × (lb+ r4 × (ub− lb)), r5 < 0.5

(14)X(t + 1) =

{

U(t + 1), f (U(t + 1) ≤ f (X(t)))

X(t), otherwise

Figure 2.  The pseudo code of the traditional GWO algorithm.
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where X(t + 1) represents the position of grey wolf individual in the (t + 1) th iteration, f (U(t + 1)) is the fit-
ness value after updating the position through the improved search strategy, and f (X(t)) is the fitness value of 
the current position.

In the improved search strategy, new solutions generated by iteration are generated around random solutions 
or optimal solutions, which helps to enhance the search and communication between grey wolf individuals. If 
the exploration formula (13) cannot provide a better position, the traditional GWO method is used to update 
the position of the grey wolf individual.

CG‑GWO algorithm. The pseudo code of CG-GWO algorithm is shown in Fig. 3 and the flow chart is 
shown in Fig. 4.

Experimental simulation and result analysis
Experimental design. To verify the performance of our approach, experiments select 16 benchmark func-
tions for simulation experiments, including five unimodal functions (F1–F5) shown in Table 2, six multimodal 
functions (F6–F11) shown in Table  3, and five fixed-dimension multimodal functions (F12–F16) shown in 
Table 4. Unimodal functions have only one global optimal solution and no local optimal solution, so they are 
used to test convergence and exploration abilities of the algorithm. Multimodal functions have only one global 
optimal solution and others are local optimal solutions. Global search and local optimization abilities of the 
algorithm are tested through multimodal functions. Fixed-dimension multimodal functions are more complex, 
which combine multiple basic functions to test the stability of the algorithm.

This work conducts two-part comparative experiments to test the effectiveness of our approach. On the one 
hand, the proposed algorithm is compared with classic optimization algorithms such as traditional Grey Wolf 
Optimization algorithm (GWO), particle swarm optimization algorithm (PSO), whale optimization algorithm 
(WOA), sparrow optimization algorithm (SSA) and farmland fertility algorithm (FFA)32. On the other hand, the 
proposed algorithm is compared with a series of improved algorithms such as the enhanced leadership inspired 
Grey Wolf Optimization algorithm (GLF-GWO), inspired Grey Wolf Optimization algorithm (IGWO) and 
modified Grey Wolf Optimization algorithm (mGWO).

Experiments in this work are all implemented on a PC (8G memory, 903G hard disk, CPU: Intel i7-4790) 
using python 3.6.8 environment. To ensure the fairness of the experiments, all algorithms are independently run 
30 times on each function. The population size is set to 30 and the maximum number of iterations is 200. Finally, 
the optimal value (Best), average value (Ave), worst value (Worst) and standard value (SD) of all benchmark 
functions are obtained.

Experimental results and analysis. Convergence accuracy analysis. To verify the optimization effect of 
our approach on the accuracy of convergence, it is compared with algorithms such as GWO, PSO, WOA, SSA, 
FFA, IGWO, mGWO and GLF-GWO on 16 benchmark functions in simulation experiments. Experimental 
results are presented in Tables 5 and 6. The bold part indicates relatively superior comparison results.

Figure 3.  The pseudo code of CG-GWO algorithm.
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Figure 4.  The flow chart of CG-GWO algorithm.

Table 2.  Unimodal functions.

Function formula Dim Range fmin

F1(x) =
n
∑

i=1

x2i 30 [− 100, 100] 0

F2(x) =
n
∑

i=1

(

i
∑

j=1

xj

)2

30 [− 100, 100] 0

F3(x) = max{|xi |, 1 ≤ i ≤ n} 30 [− 100, 100] 0

F4(x) =
n
∑

i=1

([xi + 0.5])2 30 [− 100, 100] 0

F5(x) =
n
∑

i=1

ix4i + random[0, 1) 30 [− 1.28, 1.28] 0
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As shown in Table 5, statistics of the optimal value, average value and worst value of the CG-GWO algorithm 
on all benchmark functions were at the optimal level. Experiments were given the same initial population size 
and number of iterations. On the benchmark function F12, our approach and other four classical optimization 
algorithms in the experiment could all find the optimal value. However, the average value, worst value and 
standard deviation of our approach were significantly better. In contrast, on the benchmark functions F1, F2, 
F3, F4, F7, F9, and F10, our approach had shown absolute superiority compared with other classic optimization 
algorithms in the experiment. All statistics were several orders of magnitude higher. On the benchmark func-
tions F5 and F13, although the effect of our approach was not so obvious, it was better than other four classic 
optimization algorithms in the experiment in terms of all statistics. On the benchmark functions F6 and F8, 
both the CG-GWO algorithm and the WOA algorithm had found the optimal value, but our approach was more 
concentrated and more stable.

As shown in Table 6, the CG-GWO algorithm showed great superiority on unimodal functions compared 
with a series of improved algorithms of GWO. Especially on the benchmark functions F1, F2, and F3, the optimal 
value, average value, worst value and standard deviation are far superior to other improved GWO algorithms 
in the experiment. The stability of our approach can also be clearly seen on the benchmark functions F4 and 
F5. On multimodal functions, our approach could find the theoretical optimal value well on the benchmark 
functions F6, F7, F8 and F10. At the same time, all statistics were better than other optimization algorithms in 

Table 3.  Multimodal functions.

Function formula Dim Range fmin

F6(x) =
n
∑

i=1

−xi sin
(√

|xi |
)

30 [− 500, 500] − 418.9829 × 5

F7(x) =
n
∑

i=1

[

x2i − 10 cos(2πxi)+ 10
]

30 [− 5.12, 5.12] 0

F8(x) = −20 exp



−0.2

�

�

�

�

1

n

n
�

i=1

x2i





− exp

�

1

n

n
�

i=1

cos(2πxi)

�

+ 20+ e

30 [− 32, 32] 0

F9(x) =
1

4000

n
∑

i=1

x2i −
n
∏

i=1

cos
(

xi√
i

)

+ 1 30 [− 30, 30] 0

F10(x) = 0.1
{

sin2(3πx1) +

n
∑

i=1

(xi − 1)2
[

1+ sin2(3πxi + 1)
]

+ (xn − 1)2
(

1+ sin2(2πxn)
)}

+

n
∑

i=1

u(xi , 5, 100, 4)

30 [− 50, 50] 0

F11(x) =
π

n

�

10 sin(πy1)+

n−1
�

i=1

(yi − 1)2
�

1+ 10 sin2(πyi+1)
�

+(yn − 1)2
�

+

n
�

i=1

u(xi , 10, 100, 4)

yi = 1+
xi + 1

4
u(xi , a, k,m) =











k(xi − a)mxi > a

0− a < xi < a

k(−xi − a)mxi < −a

30 [− 50, 50] 0

Table 4.  Fixed-dimension multimodal functions.

Function formula Dim Range fmin

F12(x) =







1
500 +

25
�

j=1

1

j+
2
�

i=1

(xi−aij)6







−1

2 [− 65, 65] 1

F13(x) =
11
∑

i=1

[

ai −
x1
(

b2i +bix2
)

b2i +bix3+x4

]2

4 [− 5,  5] 0.0003

F14(x) = 4x21 − 2.1x41 +
1
3 x

6
1 + x1x2 − 4x22 + 4x42 2 [− 5, 5] − 1.0316

F15(x) =
(

x2 −
5.1
4π2 x

2
1 +

5
π
x1 − 6

)2
+ 10

(

1− 1
8π

)

cos x1 + 10 2 [− 5, 5] 0.398

F16(x) =
[

1+ (x1 + x2 + 1)2
(

19− 14x1 + 3x21 − 14x2 + 6x1x2 + 3x22
)]

×
[

30+ (2x1 − 3x2)
2 ×

(

18− 32x1 + 12x21 + 48x2 − 36x1x2 + 27x22
)] 2 [− 2, 2] 3
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Function Algorithm Best Ave Worst SD

F1

PSO 2.42E−03 2.03E−02 6.91E−02 1.58E−02

WOA 6.06E−43 1.29E−38 1.05E−37 2.56E−38

SSA 1.18E−01 4.12E+00 1.75E+01 4.30E+00

FFA 3.42E−23 4.62E−14 8.41E−06 1.52E−08

GWO 7.78E−17 1.35E−15 4.07E−15 1.07E−15

CG-GWO 1.49E−162 2.81E−150 5.43E−149 1.02E−149

F2

PSO 3.63E+01 1.31E+02 2.60E+02 4.71E+01

WOA 1.88E+04 4.13E+04 5.99E+04 1.12E+04

SSA 7.63E+02 1.89E+03 4.14E+03 8.90E+02

FFA 3.52E+03 4.25E+03 6.51E+03 2.35E+02

GWO 3.48E−04 3.05E−02 2.83E−01 5.93E−02

CG-GWO 1.37E−142 3.56E−133 8.95E−132 1.60E−132

F3

PSO 8.94E−01 1.32E+00 1.73E+00 2.02E−01

WOA 6.09E−04 3.20E+01 7.74E+01 2.44E+01

SSA 5.83E+00 1.13E+01 1.87E+01 3.43E+00

FFA 4.34E−02 6.15E−01 3.15E−01 2.05E−01

GWO 1.24E−04 9.01E−04 3.11E−03 7.08E−04

CG-GWO 1.01E−77 1.04E−72 2.26E−71 4.14E−72

F4

PSO 3.35E−03 1.82E−02 5.67E−02 1.34E−02

WOA 2.98E−02 1.36E−01 3.49E−01 8.62E−02

SSA 1.82E−01 3.94E+00 1.79E+01 4.09E+00

FFA 3.15E−02 5.16E−01 6.59E−02 1.63E−01

GWO 1.32E−04 2.45E−01 7.58E−01 2.44E−01

CG-GWO 7.42E−05 1.51E−05 2.10E−05 3.28E−05

F5

PSO 6.68E−02 8.95E−01 2.87E+00 1.15E+00

WOA 5.91E−05 1.83E−03 8.91E−03 2.20E−03

SSA 9.15E−02 1.82E−01 4.34E−01 6.61E−02

FFA 3.48E−02 4.15E−02 5.95E−02 1.68E−01

GWO 6.27E−04 2.13E−03 5.11E−03 1.08E−03

CG-GWO 4.76E−05 2.51E-04 6.91E-04 1.85E−04

F6

PSO − 5.38E+03 − 4.40E + 03 − 3.50E+03 5.50E+02

WOA − 1.26E+04 − 1.09E + 04 − 7.65E+03 1.60E+03

SSA − 8.64E+03 − 7.31E+03 − 5.82E+03 6.71E+02

FFA − 7.62+03 − 6.82E+03 − 5.16E+03 1.51E+02

GWO − 8.07E+03 − 6.30E+03 − 3.04E+03 1.38E+03

CG-GWO − 1.26E+04 − 1.26E+04 − 1.25E+04 4.50E+00

F7

PSO 5.92E+01 1.07E+02 1.73E + 02 2.73E+01

WOA 0 1.89E−15 5.68E−14 1.02E−14

SSA 1.82E+01 3.90E+01 7.16E+01 1.32E+01

FFA 1.23E+01 2.61E+01 6.15E+01 1.22E+01

GWO 2.25E+00 1.33E+01 4.22E+01 8.17E+00

CG-GWO 0 0 0 0

F8

PSO 3.44E−02 3.64E−01 1.55E+00 4.15E−01

WOA 4.44E−16 6.96E−15 2.18E−14 4.41E−15

SSA 2.05E+00 3.53E+00 5.92E+00 9.28E−01

FFA 3.51E−01 4.34E−01 5.16E−01 5.15E−01

GWO 3.28E−09 9.36E−09 2.07E−08 4.34E−09

CG-GWO 4.44E−16 4.44E−16 4.44E−16 1.48E−31

F9

PSO 2.33E−02 9.22E−01 2.08E+00 5.38E−01

WOA 0 1.59E−02 3.24E−01 6.34E−02

SSA 3.38E−01 8.84E−01 1.10E+00 2.26E−01

FFA 3.18E−01 5.68E−01 6.15E−01 1.25E−01

GWO 2.66E−15 3.31E−03 3.69E−02 7.80E−03

CG-GWO 0 0 0 0

Continued
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the experiment. On the benchmark function F9, in addition to the traditional GWO algorithm, other improved 
algorithms had found the optimal value of the function. But our approach showed greater superiority in com-
parison. On fixed-dimension multimodal functions, the optimization accuracy of our approach was comparable 
to that of other improved algorithms in the experiment. Experiments showed that all optimization algorithms 
had found the optimal value on the benchmark function F12. The GLF-GWO algorithm also showed the same 
superiority in terms of average and worst value at the same time. But in contrast, our approach was more excel-
lent in standard deviation, and the optimization effect of which was more stable. On the benchmark function 
F13, the GLF-GWO algorithm and the CG-GWO algorithm had also found the optimal value, but our approach 
showed more significant concentration and stability.

Convergence speed analysis. Convergence performance experiments are conducted to observe the convergence 
effect and convergence speed of the CG-GWO algorithm more intuitively, classical optimization algorithms, and 

Function Algorithm Best Ave Worst SD

F10

PSO 1.15E−03 1.31E−02 4.44E−02 1.10E−02

WOA 6.09E−02 1.94E−01 3.61E−01 7.57E−02

SSA 4.97E+00 5.13E+01 6.36E+01 1.34E+01

FFA 4.53E−01 6.15E−01 2.54E−01 5.16E−01

GWO 1.94E−04 2.36E−01 5.30E−01 1.41E−01

CG-GWO 6.43E−05 1.16E−04 1.79E−04 3.21E−05

F11

PSO 1.35E−01 3.58E−01 5.15E+00 2.15E−01

WOA 6.59E−04 7.12E−04 3.15E−03 3.15E−03

SSA 3.21E−03 5.15E−03 2.15E−02 1.25E−03

FFA 6.52E−04 7.36E−04 9.15E−04 1.42E−04

GWO 2.48E−02 3.56E−03 4.16E−02 2.18E−02

CGGWO 6.25E−08 3.36E−07 7.56E−07 1.59E−08

F12

PSO 9.98E−01 1.36E+00 1.99E+00 4.79E−01

WOA 9.98E−01 1.89E+00 1.08E+01 1.83E+00

SSA 9.98E−01 1.59E+00 5.93E+00 1.04E+00

FFA 9.98E−01 1.68E+00 3.51E+00 1.82E+00

GWO 9.98E−01 2.70E+00 1.08E+01 2.84E+00

CG-GWO 9.98E−01 9.98E−01 9.98E−01 1.79E−10

F13

PSO 3.31E−04 2.75E−03 2.04E−02 5.88E−03

WOA 3.13E−04 7.03E−04 1.65E−03 4.02E−04

SSA 4.88E−04 1.69E−03 2.04E−02 3.49E−03

FFA 3.84E−04 3.45E−03 1.89E−02 4.16E−03

GWO 3.08E−04 1.72E−03 2.04E−02 4.99E−03

CG-GWO 3.07E−04 3.74E−04 1.22E−03 1.98E−04

F14

PSO − 1.03E+00 − 1.03E+00 − 1.03E+00 6.66E−16

WOA − 1.03E+00 − 1.03E+00 − 1.03E+00 8.28E−10

SSA − 1.03E+00 − 1.03E+00 − 1.03E+00 9.92E−14

FFA − 1.03E+00 − 1.03E+00 − 1.03E+00 7.84E−11

GWO − 1.03E+00 − 1.03E+00 − 1.03E+00 5.53E−08

CG-GWO − 1.03E+00 − 1.03E+00 − 1.03E+00 4.74E−18

F15

PSO 3.98E−01 3.98E−01 3.98E−01 1.11E−15

WOA 3.98E−01 3.98E−01 3.98E−01 1.15E−06

SSA 3.98E−01 3.98E−01 3.98E−01 2.95E−14

FFA 3.98E−01 3.98E−01 3.98E−01 2.62E−05

GWO 3.98E−01 3.98E−01 3.98E−01 1.78E−06

CG-GWO 3.98E−01 3.98E−01 3.98E−01 2.05E−16

F16

PSO 3.00E+00 3.00E+00 3.00E+00 1.92E−15

WOA 3.00E+00 3.00E+00 3.00E+00 2.11E−05

SSA 3.00E+00 3.00E+00 3.00E+00 6.02E−13

FFA 3.00E+00 3.00E+00 3.00E+00 5.71E−10

GWO 3.00E+00 3.00E+00 3.00E+00 2.38E−05

CG-GWO 3.00E+00 3.00E+00 3.00E+00 7.33E−16

Table 5.  Experimental results comparison of classical optimization algorithms.
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Function Algorithm Best Ave Worst SD

F1

GWO 7.78E−17 1.35E−15 4.07E−15 1.07E−15

mGWO 1.03E−21 1.20E−20 4.06E−20 1.14E−20

IGWO 4.81E−25 9.61E−24 4.29E−23 1.00E−23

GLF-GWO 3.81E−33 2.85E−31 1.99E−30 4.28E−31

CG-GWO 1.49E−162 2.81E−150 5.43E−149 1.02E−149

F2

GWO 3.48E−04 3.05E−02 2.83E−01 5.93E−02

mGWO 1.95E−05 2.96E−03 2.68E−02 6.17E−03

IGWO 9.61E−07 9.13E−04 1.98E−02 3.55E−03

GLF-GWO 2.34E−04 7.66E−03 6.57E−02 1.42E−02

CG-GWO 1.37E−142 3.56E−133 8.95E−132 1.60E−132

F3

GWO 1.24E−04 9.01E−04 3.11E−03 7.08E−04

mGWO 6.90E−06 3.61E−05 1.02E−04 2.77E−05

IGWO 5.39E−06 3.73E−05 1.74E−04 3.80E−05

GLF-GWO 3.95E−05 1.44E−04 3.35E−04 8.01E−05

CG-GWO 1.01E−77 1.04E−72 2.26E−71 4.14E−72

F4

GWO 1.32E−04 2.45E−01 7.58E−01 2.44E−01

mGWO 4.39E−04 2.96E−01 1.00E+00 2.25E−01

IGWO 3.24E−01 8.71E−01 1.60E+00 3.75E−01

GLF-GWO 1.10E−04 7.77E−04 3.86E−04 1.85E−04

CG-GWO 7.42E−05 1.51E−05 2.10E−05 3.28E−05

F5

GWO 6.27E−04 2.13E−03 5.11E−03 1.08E−03

mGWO 4.09E−04 1.67E−03 4.60E−03 9.45E−04

IGWO 7.22E−04 1.74E−03 4.28E−03 8.12E−04

GLF-GWO 9.02E−04 2.90E−03 6.73E−03 1.42E−03

CG-GWO 4.76E−05 2.51E−04 6.91E−04 1.85E−04

F6

GWO − 8.07E+03 − 6.30E+03 − 3.04E+03 1.38E+03

mGWO − 8.00E+03 − 5.92E+03 − 3.26E+03 1.46E+03

IGWO − 4.45E+03 − 3.80E+03 − 3.12E+03 3.55E+02

GLF-GWO − 1.00E+04 − 8.81E+03 − 5.49E+03 9.63E +02

CG-GWO − 1.26E+04 − 1.26E+04 − 1.25E+04 4.50E +00

F7

GWO 2.25E+00 1.33E+01 4.22E +01 8.17E +00

mGWO 4.55E−13 8.52E+00 4.37E +01 1.03E +01

IGWO 5.41E+00 4.18E+01 9.41E +01 2.23E +01

GLF-GWO 5.68E−14 2.82E+00 1.51E +01 3.65E +00

CG-GWO 0 0 0 0

F8

GWO 3.28E−09 9.36E−09 2.07E−08 4.34E−09

mGWO 5.64E−12 2.20E−11 7.32E−11 1.64E−11

IGWO 1.57E−13 6.29E−13 2.55E−12 4.77E−13

GLF-GWO 3.60E−14 4.51E−14 6.44E−14 5.78E−15

CG-GWO 4.44E−16 4.44E−16 4.44E−16 1.48E−31

F9

GWO 2.66E−15 3.31E−03 3.69E−02 7.80E−03

mGWO 0 1.98E−03 1.54E−02 5.04E−03

IGWO 0 6.76E−03 1.77E−02 6.94E−03

GLF-GWO 0 4.77E−03 4.92E−02 1.07E−02

CG-GWO 0 0 0 0

F10

GWO 1.94E−04 2.36E−01 5.30E−01 1.41E−01

mGWO 6.68E−04 2.04E−01 4.52E−01 1.15E−01

IGWO 3.31E−01 8.43E−01 1.49E +00 2.87E−01

GLF-GWO 6.57E−05 4.08E−04 1.10E−02 1.97E−03

CG-GWO 6.43E−05 1.16E−04 1.79E−04 3.21E−05

F11

GWO 2.48E−02 3.56E−03 4.16E−02 2.18E−02

mGWO 1.25E−06 5.15E−06 5.15E−05 2.15E−06

IGWO 3.12E−06 6.15E−06 3.51E−05 6.18E−05

GLF-GWO 6.52E−07 7.19E−07 1.25E−-06 1.54E−06

CG-GWO 6.25E−08 3.36E−07 7.56E-07 1.59E−08

Continued
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a series of improved algorithms of GWO. The fitness convergence curves of each algorithm on 16 benchmark 
functions are drawn respectively as shown in Figs. 5 and 6, using the number of iterations as the abscissa and the 
fitness value as the ordinate.

It can be seen from Fig. 5 that the convergence curve of the CG-GWO algorithm is below other classical 
optimization algorithms in the experiment. The convergence accuracy and convergence speed on 16 benchmark 
functions have been significantly improved. For the unimodal functions, as shown in F1 and F4, CG-GWO con-
verged quickly to the optimal value, but SSA still did not reach the optimal value after 100 iterations. As shown 
in F2 and F3, our approach had been optimized to the optimal value in the 10th iteration. The GWO algorithm 
converged to the optimal value until the 50th iteration. In contrast, the PSO, WOA, SSA and FFA algorithms still 
did not reach the optimal value after 200 iterations, and the optimization results of WOA and SSA algorithms 
were quite different from the optimal value. As shown in F5, PSO did not converge to the optimal value. For the 
multimodal functions, as shown in F6, GWO and PSO did not tend to converge after 200 iterations. The SSA 
algorithm converged in the 110th iterations, but which fallen into a local optimum. Both WOA and CG-GWO 
had a large convergence curve slope at the beginning of the iteration. Although our approach had a slower con-
vergence than WOA in the early stage, the convergence speed and accuracy of which were higher than WOA 
after 40 iterations. The above comparison also fully reflected the global search ability of our approach. As shown 
in F7–F8, PSO, SSA and FFA did not converge to the optimal value after 200 iterations. As shown in F9–F11, 
CG-GWO converged to the optimal value faster than other algorithms. For the fixed-dimension multimodal 
functions, as shown in F12-F16, all optimization algorithms could converge to close to the optimal value. But 
in contrast, the CG-GWO algorithm converged faster, and the WOA algorithm converges the slowest. The con-
vergence curve of the WOA algorithm tends to stabilize until the 50th iteration.

It can be seen from Fig. 6 that the CG-GWO algorithm had shown its superiority compared to the traditional 
GWO algorithm and a series of improved algorithms. On the unimodal functions F1–F5, all algorithms could 
converge to the optimal value. But our approach could converge to a stationary value faster. On the multimodal 
functions F6 and F7, our approach could explore closer to the theoretical optimal value after 200 iterations, and 
the convergence speed of which was also faster. However, other improved algorithms in the experiment either 
did not converge to a stable value or fall into a local optimal value. On the multimodal functions F8, F9, F10 and 
F11, all optimization algorithms in the experiment could also converge to the optimal value, but our approach 
converged more quickly. On the fixed-dimension multimodal function F12 and F16, the convergence speed of all 
algorithms in the experiment was comparable. However, the convergence accuracy of our approach was higher. 
Similarly, on the fixed-dimension multimodal function F13–F15, our approach could converge to the optimal 
value faster than other optimization algorithms in the experiment.

Function Algorithm Best Ave Worst SD

F12

GWO 9.98E−01 2.70E +00 1.08E +01 2.84E +00

mGWO 9.98E−01 2.25E +00 1.08E +01 1.86E +00

IGWO 9.98E−-01 4.00E +00 1.27E +01 3.82E +00

GLF-GWO 9.98E−01 9.98E−01 9.98E−01 2.11E−10

CG-GWO 9.98E−01 9.98E−01 9.98E−01 1.79E−10

F13

GWO 3.08E−04 1.72E−03 2.04E−02 4.99E−03

mGWO 3.08E−04 3.11E−03 2.04E−02 6.77E−03

IGWO 3.08E−04 1.09E−03 2.09E−02 3.69E−03

GLF-GWO 3.07E−04 1.80E−03 2.04E−02 4.97E−04

CG-GWO 3.07E−04 3.74E−04 1.22E−03 1.98E−04

F14

GWO − 1.03E+00 − 1.03E +00 − 1.03E +00 5.53E−08

mGWO − 1.03E+00 − 1.03E +00 − 1.03E +00 2.06E−07

IGWO − 1.03E+00 − 1.03E +00 − 1.03E +00 2.10E−06

GLF-GWO − 1.03E+00 − 1.03E +00 − 1.03E +00 2.81E−08

CG-GWO − 1.03E+00 − 1.03E +00 − 1.03E+00 4.74E−18

F15

GWO 3.98E−01 3.98E−01 3.98E−01 1.78E−06

mGWO 3.98E−01 3.98E−01 3.98E−01 7.00E−06

IGWO 3.98E−01 3.98E−01 3.98E−01 1.11E−04

GLF-GWO 3.98E−01 3.98E−01 3.98E−01 1.20E−06

CG-GWO 3.98E−01 3.98E−01 3.98E−01 2.05E−16

F16

GWO 3.00E+00 3.00E+00 3.00E+00 2.38E−05

mGWO 3.00E+00 3.00E+00 3.00E+00 1.96E−05

IGWO 3.00E+00 3.00E+00 3.00E+00 1.27E−05

GLF-GWO 3.00E+00 3.00E+00 3.00E+00 2.14E−06

CG-GWO 3.00E+00 3.00E+00 3.00E+00 7.33E−16

Table 6.  Experimental results comparison of improved GWO algorithms.
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Figure 5.  Convergence curve comparison of classic optimization algorithms.
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Figure 5.  (continued)



14

Vol:.(1234567890)

Scientific Reports |        (2022) 12:18961  | https://doi.org/10.1038/s41598-022-23713-9

www.nature.com/scientificreports/

Therefore, our approach is superior to other optimization algorithms in the experiment in terms of conver-
gence accuracy and convergence speed, and the global search ability of that is also significantly improved, which 
can effectively avoid falling into the local optimal value. Experiments have proved the effectiveness of improved 
ideas and reflected the superiority of the CG-GWO algorithm in solving more complex optimization problems.

Algorithm performance analysis. To evaluate the optimization ability and stability of the improved algorithm, 
this work draws the box  plot33 of all algorithms on 16 benchmark functions. Comparative analysis is performed 
based on the upper four scores, the median, the lower four scores and outliers in the box plot. This work con-
ducts 30 independent experiments on all algorithms. Since experimental results of different algorithms are quite 
different, different coordinate systems are used for comparison when drawing the box plot to observe the com-
parison results more intuitively. Experimental results are presented in Figss. 7 and 8.

It can be seen from Fig. 7 that the CG-GWO algorithm has a weaker dispersion in the optimization process, 
and the optimization value of which is more concentrated. On the unimodal functions F1–F5, the order of mag-
nitude of the optimization results of our approach was much smaller than other classic optimization algorithms 
in the experiment. Experimental results reflected the superiority in the optimization accuracy and higher stability 
of the improved algorithm. On the multimodal functions F6–F11, our approach was more concentrated and 
has fewer outliers than other classic optimization algorithms in the experiment. Experimental results verified 
the robustness of our approach in terms of global search ability. On the fixed-dimension multimodal functions 
F12–F13, the CG-GWO algorithm and the GWO algorithm had similar optimization effects. They were far better 
than other classic optimization algorithms in the experiment. However, our approach had fewer outliers, more 
concentrated optimization values and better optimization results. As shown in F14–F16, CG-GWO had fewer 
outliers and was more stable.

As shown in Fig. 8, most improved GWO algorithms showed superiority compared to the traditional GWO 
algorithm. On the unimodal functions F1–F5, the CG-GWO algorithm had a better optimization effect. On the 
benchmark functions F3 and F5, the contrast degree of each algorithm was relatively close, but our approach 
showed higher convergence stability and had fewer outliers. On the multimodal functions F6–F11, only the 
superiority of the GLF-GWO algorithm was close to that of our approach. Although the global search ability of 
the GLF-GWO algorithm was enhanced due to the Levy-flight search mechanism, it produced more outliers. 
On the fixed-dimension multimodal functions F12–F16, the GLF-GWO algorithm was relatively close to our 
approach. The GLF-GWO algorithm was better than the CG-GWO algorithm on the range of the optimal value 

Figure 5.  (continued)



15

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18961  | https://doi.org/10.1038/s41598-022-23713-9

www.nature.com/scientificreports/

Figure 6.  Convergence curve comparison of improved GWO algorithms.
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Figure 6.  (continued)
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change, but our approach had far fewer outliers. Experimental results embodied the better global search ability 
and higher stability of our approach.

Algorithm runtime analysis. To verify the computational effectiveness of the CG-GWO algorithm, this paper 
compares the runtime of the CG-GWO algorithm with other algorithms. Experimental results are presented in 
Table 7. To save space, this paper selects four representative functions to draw bar graph. Experimental results 
are presented in Fig. 9.

As shown in Table 7 and Fig. 9, the CG-GWO algorithm has Cauchy-Gaussian mutation in the improved 
strategy, which will consume more time. In F3, F8 and F10, the runtime of CG-GWO was only lower than GLF-
GWO. However, we can see that the increase of time consumption was not too great. We can accept this change 
in practical application. In F12, the runtime of CG-GWO is medium. So, the CG-GWO algorithm has certain 
computational validity.

Therefore, the CG-GWO algorithm has a more stable convergence ability compared with classic optimization 
algorithms and a series of improved GWO algorithms. Our approach shows its superiority in the optimization 
accuracy and the degree of dispersion. Experimental results prove that our approach has better optimization 
ability and stable performance.

Case study of real‑world application. IN this section, the performance of the nine mentioned algorithms, PSO, 
WOA, SSA, FFA, GWO, I-GWO, m-GWO, GLF-GWO and CG-GWO, is evaluated in engineering real applica-
tion: pressure vessel  design34.

Pressure vessels are usually spherical or cylindrical in shape. Cylindrical vessels may be oriented vertically 
or horizontally. Vertical vessels have many uses: Fractionating Towers, Contactor Towers, Reactors and Vertical 
Separators. This problem works to reduce the overall cost of material, formation, and welding of the cylindrical 
pressure vessel reinforced at both ends by hemispherical heads as shown in Fig. 10. The mathematical formula-
tion of pressure vessel design is described as follows:

Figure 6.  (continued)
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Figure 7.  Boxplot comparison of classic optimization algorithms.
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where 0 ≤ Ts ,Th ≤ 99 and  10 ≤ R, L ≤ 200.
The pressure vessel design problem is one of the most common problems. Researchers have used optimization 

problems in many studies to confirm the efficacy of their new optimization algorithms. The comparison of the 
optimal results obtained for the pressure vessel design problem by CG-GWO and other algorithms mentioned 
above is presented in Table 8. According to the cost results obtained for the pressure vessel design problem in 
Table 8, CG-GWO reported the lowest of 5884.6849. And the optimum parameters are 0.779216, 0.396459, 
40.265625 and 200.000000.

The comparison of the statistical results for the pressure vessel design problem over 50 independent runs is 
shown in Table 9. It can be seen from results that the stability of CG-GWO is better, which presented excellent 
results in terms of Ave and Std values.

Conclusion and future works
This work proposed CG-GWO algorithm aiming at the slow convergence and easy to fall into local optimal 
problems of traditional Grey Wolf Optimization algorithm. The Cauchy-Gaussian mutation operator was intro-
duced, which acted on the leader wolves. The dominant degree of Cauchy mutation and Gaussian mutation in 
the algorithm was dynamically adjusted to improve the global search ability of the algorithm according to the 
current iteration period. At the same time, the greedy mechanism was added to perform Cauchy-Gaussian muta-
tion in the lead wolves. Outstanding individuals during mutation were retained to avoid the high diversity of the 
algorithm and ensured the convergence speed of the algorithm. CG-GWO added an improved search strategy 
to avoid the algorithm from falling into the local optimum and improve the convergence accuracy of the algo-
rithm. In the improved strategy, new solutions were generated around random solutions or optimal solutions. 
Experimental results showed that our approach effectively improved the accuracy and speed of convergence. In 
the accuracy experiments, CG-GWO showed several times superiority. The convergence performance was also 
able to converge to the optimal value relatively quickly, while the stability of the algorithm was also shown to be 

(15)

min f (Ts ,Th,R, L) = 0.6224TsRL+ 1.7781ThR
2 + 3.1661T2

s L+ 19.84T2
hL

s.t.



















g1 = −Ts + 0.0193R ≤ 0

g2 = −Th + 0.0095R ≤ 0

g3 = −πR2L− 4/3πR3 + 1296000 ≤ 0

g4 = L− 240 ≤ 0

Figure 7.  (continued)
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Figure 8.  Boxplot comparison of improved GWO algorithms.
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Figure 8.  (continued)
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Figure 8.  (continued)

Table 7.  Experimental results comparison of algorithm runtime.

Function CG-GWO GLF-GWO I-GWO m-GWO GWO PSO WOA SSA FFA

F1 16.42 27.63 14.14 13.86 13.99 12.84 12.05 11.73 12.63

F2 20.85 80.11 17.47 16.91 17.09 16.02 15.64 17.02 16.67

F3 16.28 28.32 14.32 13.88 14.03 12.88 11.71 5.71 8.43

F4 16.34 31.3 14.19 13.97 14.01 12.87 12.12 11.38 12.42

F5 17.13 33.74 14.38 14.07 14.15 13.53 12.27 10.42 12.65

F6 16.92 34.91 14.25 14.01 14.17 13.42 12.29 10.39 11.73

F7 16.16 35.15 14.09 15.05 13.72 12.79 11.69 11.9 11.42

F8 17.58 31.25 14.54 14.86 14.55 14.18 13.38 12.38 14.25

F9 18.36 42.09 14.67 14.65 14.78 14.07 12.88 12.49 13.75

F10 18.7 33.94 15.18 16.29 15.4 14.69 14.42 13.02 15.36

F11 16.64 40.04 14.33 14.07 14.15 13.35 12.21 10.46 11.72

F12 4.68 8.36 3.15 4.63 2.64 5.53 7.35 3.13 4.13

F13 5.68 8.36 4.15 12.14 12.11 12.19 7.35 3.13 7.62

F14 2.27 7.91 2.41 2.63 2.64 5.53 1.06 2.49 2.56

F15 2.3 2.02 2.42 1.11 1.11 1.45 1.59 1.09 1.52

F16 2.67 2.56 2.54 2.13 2.14 1.66 1.79 1.36 1.84

high by the box plot. Although CG-GWO did not have much advantage in terms of runtime, the superiority of 
the algorithm was also demonstrated by the comparison of the pressure vessel design problem.CG-GWO was 
able to find the optimal value more consistently than other algorithms mentioned in the paper. In conclusion, 
CG-GWO showed good optimization ability and stability on unimodal functions, multimodal functions, and 
fixed-dimension multimodal functions, which could effectively avoid falling into the local optimum and expand 
the individual search space.
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Figure 9.  Runtime comparison of algorithms.

Figure 10.  Pressure vessel design problem.

Although CG-GWO algorithm showed good convergence accuracy, convergence speed and stability in most 
cases, its stability is slightly poor in some specific situations. At the same time, Cauchy-Gaussian mutation will 
take more time, which is also a limitation of the algorithm because of its long running time. The proposed 
algorithm has some limitations in practical application. If the scale of the problem is too large, the calculation 
of Xavg (t) in the improved search strategy is relatively more complicated, which will affect the optimization 
progress of the algorithm. Also, if multiple variables in the actual problem affect each other, it is difficult to 
make the selection of the leader wolves, and the determination of variable σ in the Cauchy-Gaussian mutation 
will become complicated, which also bring great challenges to the proposed algorithm. In the future work, we 
should pay attention to the stability improvement of the algorithm and improve the efficiency of the algorithm. 
The CG-GWO algorithm will be applied to more complex practical engineering optimization problems to help 
optimizers determine the final optimization plan more quickly and accurately.
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Data availability
The datasets generated and/or analyzed during the current study are not publicly available due that the bench-
mark functions used in the article have been explained in the experimental part but are available from the cor-
responding author on reasonable request.
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