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Image local structure information 
learning for fine‑grained visual 
classification
Jin Lu1*, Weichuan Zhang2, Yali Zhao3 & Changming Sun4

Learning discriminative visual patterns from image local salient regions is widely used for fine‑grained 
visual classification (FGVC) tasks such as plant or animal species classification. A large number of 
complex networks have been designed for learning discriminative feature representations. In this 
paper, we propose a novel local structure information (LSI) learning method for FGVC. Firstly, we 
indicate that the existing FGVC methods have not properly considered how to extract LSI from 
an input image for FGVC. Then an LSI extraction technique is introduced which has the ability to 
properly depict the properties of different local structure features in images. Secondly, a novel LSI 
learning module is proposed to be added into a given backbone network for enhancing the ability of 
the network to find salient regions. Thirdly, extensive experiments show that our proposed method 
achieves better performance on six image datasets. Particularly, the proposed method performs far 
better on datasets with a limited number of images.

It is well known that object classification is essential and important in computer vision and image processing. 
For the past few years, sustained and stable progress has been gotten in fine-grained visual classification (FGVC). 
On one hand, many deep neural  networks1–8 with improved learning ability to recognize the subtle differences 
between highly similar objects have been designed. On the other hand, amounts of fine-grained image datasets, 
including bird  species9,  car10,  aircraft11, and ultra-fine-grained (UFG)12, are collected by domain experts. In these 
datasets, complex rules is used for measuring the accuracy of object classification methods, and also benefit for 
improving better algorithms.

The key step of FGVC is to learn discriminative information from salient regions. The existing FGVC methods 
fall into two groups. The methods in the first  group13 intend to optimize the neural network structure for learn-
ing discriminative information from salient regions. The methods in the second  group14 try to locate the salient 
regions by a bounding box or part annotations  mechanism15–17 and then perform object classification using the 
discriminative information from the selected regions.

As we know, extracting (local structure information) LSI from each input image is the basic step of FGVC. 
At present, a lots of LSI extraction techniques such as first- and second-order  derivative18,19 have been proposed. 
Moreover, image data augmentation techniques is widely used to increase the efficiency of LSI extraction for 
better finding the discriminative regions and improving the performance of FGVC,  including20, image  rotation21, 
image  flip5,7,22, and image affine  transformations23. However, within the scope of our investigations, no one has 
systematically studied how to properly depict different local structure features (e.g., edge, corner, and blob) in 
each input image for object classification in the field of FGVC. The reason is that they have not considered how 
to properly extract LSI from each input image and also have not considered the properties of different types of 
image local structure features and the differences among them. For example, Feng et al.21 intend to use original 
image and rotated image (e.g., rotating the original image counterclockwise by π/2, π , and 3 π/2) for enhancing 
the ability for feature learning. However, it is  recently24,25 demonstrated that the LSI between the image and the 
image rotated by π are the same.

In this paper, the first- and second-order directional  derivative25–35 of image local structural features are 
utilized to investigate the properties of the features which also enable us to study the existing LSI extraction, 
image data augmentation, and description of local structure feature techniques. Our research indicates that 
the existing image data augmentation techniques (e.g., lighting  changes36, colorizing  image20, and image affine 
 transformations23) have a great impact on the performance of FGVC. If the extraction of LSI and the description 
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of local structure features from each input image are not carefully considered in the existing image date augmen-
tation techniques, they cannot efficiently enhance the ability of a network to extract LSI from each input image 
which can cause the stability issue of FGVC or even weaken the performance of FGVC. The aforementioned 
phenomena are more likely to happen under unsupervised conditions. Meanwhile, the first- and second-order 
directional derivatives of edge, corner, and blob indicate that it is necessary for us to extract LSI of local struc-
ture features along multiple filter orientations. Only in this way, can we properly obtain the LSI of different local 
structure features.

In this work, we propose a novel LSI learning method for FGVC. The idea of extracting image LSI along mul-
tiple filter orientations and the idea of attention enhancement mechanism (AEM)37 are combined to efficiently 
extract LSI from each input image and localize salient regions automatically for FGVC. Besides adequately 
extracting LSI from each input image, no additional auxiliary conditions is required by our proposed method 
to prevent overfitting and noise influence. Furthermore, the overall structure information of objects has been 
considered in our method.

The main contributions of our proposed method comprise three aspects. Firstly, our unique way of LSI 
extraction from an input image is illustrated by an example of the first- and second-order directional derivative 
based LSI extraction of local structure features. Furthermore, the extracted LSI has the ability to properly depict 
the complete local structural features in images. Secondly, a novel LSI learning method requiring no additional 
object notation is proposed for FGVC. Thirdly, the proposed method outperforms eight state-of-the-art FGVC 
methods in five standard image datasets (i.e.,  UFG12,  flower38, bird  species9,  car10, and  aircraft11).

This paper is organized as follows. In section “Related work”, the problem of FGVC and the existing FGVC 
methods are briefly introduced. In section “Proposed method”, we propose a novel LSI learning method after 
showing how to extract LSI from an input image. In section “Experiments”, we demonstrate the performance 
of our proposed method on six standard datasets by comparing with the eight existing benchmark methods.

Related work
There are two aspects of FGVC problem, the first is how to make a given network identify discriminative regions, 
and the second is how to learn the structure of objects. The existing FGVC methods can be roughly divided 
into two categories. In the first category of  methods15–17, first the salient regions are located, then FGVC is 
performed based on the structure information of objected from the selected regions. It is worth to note that 
these  methods15–17 usually spend so much time in collecting annotations according to a bounding box or part 
annotations mechanism.

In the second category of  methods3–8,22,39, the salient regions is determined by optimizing the neural network 
structure. Fu et al.39 proposed an attention mechanism to locate the salient regions, then features are learned in 
the selected regions by using multi-scale technique. Yang et al.4 proposed a multi-agent learning mechanism to 
identify information regions, then the selected regions was carefully checked for FGVC. Chen et al.5 proposed 
a destruction and construction learning (DCL) mechanism, which had better ability to learning discriminative 
regions and features. Zhou et al.7 showed that identifying holistic structure of different objects in each input 
image was benefit for locating salient regions. Min et al.8 enlarged bilinear pooling  technique40 to a multi-object 
matrix normalization (MOMN) method, which has the ability to simultaneously regularize a second-order 
representation based on square-root, low-rank and sparsity.

Additionally, image data augmentation techniques are considered as good assistant of FGVC. The image data 
augmentation have the function of increasing the diversity and the amount of training data, which help to lower 
the chance of network overfitting and improve the classification performance. The image data augmentation 
techniques can be classified into two groups. The first group is manual image data augmentation techniques, 
including image geometric transformations, flipping, colorizing image, cropping, rotation, noise injection, and 
mixing images. The second group is automatic  augmentation41, including auto augmentation  learning42 and 
random erasing data  augmentation43.

Proposed method
In this section, we firstly present the way of properly extracting LSI from an input image and secondly propose a 
novel LSI learning method for FGVC. Figure 1 shows the overall pipeline of our propose LSI learning framework, 
including four modules as LSI preprocessing, backbone classification network, classification network, and local 
structure feature similarity measure (LSFSM).

LSI extraction. It is well known that the accuracy of LSI has great influence over subsequent tasks of an 
input image in computer vision and image processing. As the basic structural feature of an image, image corner 
and edge are generally detected by using the first-order  derivatives25,27,44, and blob are generally detected by 
using the second-order  derivatives45. Next, examples of these three basic structural features detection are used 
to show our way to extract LSI from an input image, in which both the scale factor and the anisotropic factor 
are set to 

√
1.5.

Figure 2a is the test image ’Building’, where a corner is indicated as a ‘ � ’, an edge point is indicated as a ‘ � ’, and 
a blob is indicated as a ‘ © ’. Figure 2b–d are the FOAGDD of a T-type corner, the FOAGDD of the step edge, and 
the SOAGDD of the blob along different filter orientation, respectively. It can be seen from Fig. 2b and c that the 
variation of the directional derivative along filter orientation from 0 to 2 π is different for T-type corner and step 
edge. That is, the directional derivative of the T-type corner has three local maxima and three local minima, and 
the directional derivative of the step edge has only one local maximum and one local minimum. Figure 2b and c 
also indicate that the FOAGDDs at horizontal and vertical filter orientations cannot distinguish the corner from 
the step edge, which can be explained by the FOAGDD representations of corners and  edges25,28. This phenomena 
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Figure 1.  The overall pipeline of our proposed LSI learning framework. (1) Information preprocessing: 
rotate the input and shuffled images. (2) Backbone classification network: extract the basic feature maps. (3) 
Classification network: classify images into fine-grained categories. (4) LSFSM: measure local structure features 
similarity of different images.

(a) (b) (c) (d)

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

20
15
10

0
5

20
15
10

0
5

20
15
10

0
5SO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

0
-5

-10

-20
-15

0
-5

-10

-20
-15

0
-5

-10

-20
-15SO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

20
15
10

0
5

20
15
10

0
5

20
15
10

0
5SO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D
D

20
15
10

0
5

20
15
10

0
5

20
15
10

0
5SO

AG
D
D

40
20
0

-40
-20

40
20
0

-40
-20

40
20
0

-40
-20FO

AG
D

D

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

Figure 2.  Examples of the FOAGDDs at a corner (marked by ‘ �’)and an edge point (marked by ’ � ’) and the 
SOAGDDs at a blob (marked by ‘ © ’) at the same location under different imaging conditions.
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reminds us that the LSI of an input image should be extracted from multiple filter orientations. Figure 2e is the 
test image ’Building’ with lighting change. Figure 2f–h are the FOAGDD of the corner, the FOAGDD of the 
step edge, and the SOAGDD of the blob, respectively. Figure 2f–h clearly show that, the FOAGDD of the corner 
are larger in many filter orientations, by contrast, the FOAGDD of the edge and the SOAGDD of the blob are 
smaller in many filter orientations. Therefore, lightning condition has great impact on the LSI extraction and the 
subsequent tasks such as the description and classification of different local structural features.

Meanwhile, image  rotation21 or image horizontal  flip5,7 is a widely used operation in image data augmenta-
tion for FGVC. After rotating the original image counterclockwise by π as illustrated in Fig. 2i, it can be seen 
from Fig. 2j–l that the absolute first-order directional derivative of the corner and edge and the second-order 
directional derivative of the blob are equal to the values of the corresponding positions on the original image 
as shown in Fig. 2b–d. After horizontally flipping the original image as illustrated in Fig. 2m, it can be seen 
from Fig. 2n–p that the absolute first-order directional derivative of the corner and edge and the second-order 
directional derivative of the blob are equal to the values of the corresponding positions on the original image.

Based on the above examples, we can find that some image data augmentation operations can make the LSI of 
the local structure features prominent and make it easy for classification, while some image data augmentation 
operations will make the LSI of the local structure features less prominent and make it difficult for classification, 
and some image data operations have no effect on LSI extraction. Furthermore, multi-scale  techniques16,39 also 
have been widely used for enhancing the LSI extraction and performing FGVC. Zhang and  Sun25,32 revealed that 
the existing multi-scale techniques can only efficiently enhance the LSI extraction along the established filtering 
orientation of backbone networks. The key of LSI extraction from an input image is to extract LSI along multiple 
filter orientations. The reason is that only by extracting LSI of each input image along multiple orientations, can 
the properties of different local structure features be properly depicted. It means that when performing FGVC, 
we need to process the extracted local structure information of an input image in different filter orientations at 
the same time. Only in this manner can we accurately extract sufficient LSI from each input image for analyzing 
the properties of different salient regions and performing more effective FGVC.

Information preprocessing. AEM37 is an efficient way to make a network concentrated on learning local 
salient contents. We will extend the AEM from one-dimensional signal to two-dimensional signal for FGVC. 
For an input image I, we first establish its corresponding Cartesian coordinates based on the central pixel of 
the image. The input image is partitioned into N × N sub-image blocks B i, j where i ( −⌊N2 ⌋ ≤ i ≤ ⌊N2 ⌋ ) and j 
( −⌊N2 ⌋ ≤ j ≤ ⌊N2 ⌋ ) represent the horizontal and vertical indices respectively. Then each sub-image block B(i, j) 
is placed in the image with uniform distribution. The shuffled image is denoted as S. It is worth to note that the 
shuffled image in AEM will make the network concentrate on local salient regions. However, AEM will make the 
network ignore the overall structure information of object.

We rotate both the original image I and shuffled image S in interval πK  in the range of [0, (K−1)π
K ] , which 

enhance the ability of the network on learning the salient local regions of objects and the overall structure of 
objects. Then a series of rotated original images Ik ( k = 1, 2, . . .,K − 1 ) and rotated shuffled images Sk ( k = 1, 2, . . .
,K − 1 ) are fed into the backbone network for training. Figure 3 is an example of a backbone network for 
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Figure 3.  Examples of the LSI extraction. (a) LSI extraction of the existing image data augmentation technique. 
(b) LSI extraction of our proposed information preprocessing.
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extracting the first-order intensity variation information of each input image. It can be seen from Fig. 3a that, 
with the existing image date augmentation technique, only the LSI along a pair of orthogonal orientations is 
extracted from each input image in each epoch. By contrast, with our operation, the LSI along 4 (K − 1) ori-
entations is extracted from each input image in each epoch, as shown in Fig. 3b. In this way, the network has a 
high chance to obtain enough LSI from each input image for feature learning. This is impossible for the existing 
state-of-the-art FGVC  methods1–5,7,8, as they have not considered how to use LSI for accurately depicting local 
structure features and performing FGVC. Experimental comparisons illustrate that our method performs far 
better when the number of trainning images in the dataset is limited.

Classification network. Commonality always exists among the objects in different images of the same 
category. According to the information preprocessing module, the rotated original images Ik ( k = 1, 2, . . .,K1 ) 
and the rotated shuffled images Sd ( d = 1, 2, . . .,K2 ) are transformed from the input image I for our method. 
After that, the set {I1,. . .,IK1,S1,. . .,SK2 , l} is training, where l is the corresponding ground truth one-vs-all label 
indicating fine-grained categories. Image group {I1,. . .,IK1,S1,. . .,SK2} is sent to the backbone network to obtain the 
corresponding feature maps. Next, an adaptive average pooling layer and a fully connected layer in classification 
network are used to process the feature maps to obtain the classification distribution {ϕ(I1),. . .,ϕ(IK1) , ϕ(S1),. . .
,ϕ(SK2)} . In this way, the classification loss Lc is defined as

where C represents the image set for training.

Local structure feature similarity measure. It is worth to note that the aforementioned classification 
network is to perform FGVC by learning holistic and local information of objects. Inspired  by46, similarity meas-
urement of local regions among different images are introduced to make the network learn more LSI of objects 
for better FGVC.

It is worth to note that the positions of the sub-images have changed after the original image is rotated or 
shuffled. It is necessary for us to give a new index for the rotated or shuffled image in the information preproc-
essing module. For each rotated original image Ik ( k = 1, 2,. . .,K1 ), its corresponding index (u, v) of sub-image 
block Bk(u, v) can be obtained by the product of the index (i, j) of the original image block B(i, j) and a rotation 
matrix Rk

Given a sub-image block B(i, j) of the original image I, the average gray value of the sub-image block B(i, j) is 
compared with the average gray value of each sub-image block S1(m, n) of the shuffled image S1 . The index (i, j) 
of the sub-image block B(i, j) is assigned to the index (m, n) of the sub-image block S1(m, n) when the average 
gray value of the two sub-images is the closest. In this way, the index (m, n) of each sub-image block S1(m, n) is 
obtained. Meanwhile, the index (p, q) of the sub-image block Sd(p, q) of the rotated shuffled image Sd ( d = 1, 2
,. . .,K2 ) can be obtained by the product of the index (m, n) of the shuffled image block S1(m, n) and the rotation 
matrix Rk using Eq. (2).

In this module, the indices of {I1,. . .,IK1,S1,. . .,SK2} are used as labels. This group of images {I1,. . .,IK1,S1,. . .,SK2} 
are sent to the backbone network, and their corresponding feature maps are obtained. For each feature map, it 
is processed by a 1× 1 convolution layer, an activation function Tanh, an average pooling layer, reshape, and 
permuting the array dimensions for obtaining the prediction result of the index of each image block. The results 
of index prediction of the rotated original image and the rotated shuffled image are denoted as (τk(u), τk(v)) 
( k = 1, 2, . . .,K1 ) and (εd(p), εd(q)) ( d = 1, 2, . . .,K2 ) respectively. Then the Euclidean distance is used to measure 
the similarity of local features by calculating the difference between the index labels of input images and their 
corresponding index prediction results.

Finally, we show the pseudo code of our proposed LSI learning based FGVC algorithm.

(1)Lc = −
∑

I∈C

( K1
∑

k=1

l · log(ϕ(Ik))+
K2
∑

d=1

l · log(ϕ(Sd))
)

,

(2)

[u, v] =[i, j]Rk ,

Rk =

[

cos( (k−1)π
K1

) − sin( (k−1)π
K1

)

sin( (k−1)π
K1

) cos( (k−1)π
K1

)

]

.

(3)

Lsm =
K1
∑

k=1

⌊ N
2 ⌋

∑

u=−⌊ N
2 ⌋

⌊ N
2 ⌋

∑

v=−⌊ N
2 ⌋

√

(τk(u)− u)2 + (τk(v)− v)2+
K2
∑

d=1

⌊ N
2 ⌋

∑

p=−⌊ N2 ⌋

⌊ N2 ⌋
∑

q=−⌊ N
2 ⌋

√

(εd(p)− p)2 + (εd(q)− q)2.
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Experiments
In this section, firstly, the standard datasets, including UFG image  datasets12,CUB-200-2011 (CUB)9, Stanford 
Cars (CAR)10, FGVC-Aircraft (AIR)11, Oxford Flower (FLO)38, and plant disease (PD)47, and experiment settings 
we used in experiments are introduced. Secondly, the relationship between information preprocessing and the 
proposed method is illustrate. Thirdly, the performances of the proposed LSI learning method and eight state-
of-the-art methods, including ResNet-502,VGG-161, NTS-Net4, fast-MPN-Cov3,  DCL5, Cross-X6,  MOMN8, and 
 ACNet22, are compared according to several experiments. The codes of these benchmark methods are obtained 
from their authors.

Experiment setting. The proposed method and aforementioned state-of-the-art benchmark methods are 
applied to the six image datasets then their classification performance are compared. Moreover, we emphasize 
that in our experiments the only annotation used for training is the classification labels of the image datasets. 
The proposed method is implemented in Pytorch using a 3.50 GHz CPU with 64 GB memory and four NVIDIA 
Geforce GTX TITAN X with 12 GB memory.

The UFG  datasets12 include a soybean dataset and a cotton dataset. The cotton dataset contains 80 cotton leaf 
categories with 3 training images per category. It also includes 240 images as testing data. The soybean dataset 
contains 1200 images of 200 cultivars of soybean. They are divided into two parts: 600 images for training and 600 
images for testing. The FLO  dataset38 contains 8189 images of 102 classes of flowers. The images are divided into 
2040 training images and 6149 testing images from 102 classes. The  CUB9 contains 5994 training images and 5794 
testing images from 200 classes of birds. The CAR 10 contains 8144 images for training and 8041 images for testing 
form 196 classes. The  AIR11 contains 6667 training images and 3333 test images from 100 classes. For the  PD47, 
38 plant disease categories with 5700 training images and 5700 testing images are selected in this experiment.

We use VGG-161 and ResNet-502 as backbone network in our methods. The UFG  operation12 is followed 
to keep the aspect ration of the original object shapes. In this operation, the input images are padded to square 
before being resized to the size of 440× 440 pixels, and then they are randomly rotated and cropped to 384× 384 
pixels. 160 epoches are trained by all the methods, using stochastic gradient descent with a batch size of 16. At 
first, the learning rate is set as 0.001 and then decreases by a factor of 10 every 60 epochs. Moreover, during the 
experiments, the benchmark methods with carefully fine-turning are set according to the corresponding papers.

Parameter settings. Within the scope of our investigations, the UFG  datasets12 is one of the most chal-
lenging datasets in FGVC. The reasons are as follows. The cotton and soybean image datasets include 80 and 200 
very fine grained cultivars respectively, while they only have three training images in each category. On the other 
hand, their category attribution is mainly determined by genes, and it is difficult for human to accurately classify 
them. Take three cotton images as an example as illustrated in Fig. 4, it is easy for people to classify Fig. 4a and 
b into one category, and Fig. 4c in another category. In fact, Fig. 4b and c are of the same category, and Fig. 4a is 
from another category.

In this subsection, we discuss the selection of the number of sub-image blocks N and the image rotation 
directions. We first fix the input image set as {I , I π

4
, S, S π

4
} to check the accuracy of FGVC of the proposed 

method with different number of sub-image blocks. I represents the original image, I π
4
 represents the rotated 

Figure 4.  Example of different types of cotton leaf images.
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original image counterclockwise by π4  , S represents the shuffled image, and S π
4
 represents the rotated shuffled 

image by rotating π4  counterclockwise. It can be observed from Table  1 that the proposed method achieves the 
best performance when N is 6.

Secondly, we fix the number of the sub-image blocks N to 6 to check the accuracy of the proposed method 
with different input image sets. Figure 5 indicates that the FGVC performance is greatly impacted by the num-
bers of image rotations in different directions. It can be seen in Fig. 5 that, the performance of the image sets 
with 4 images is better than that of the image set with 2 images. Moreover, the proposed method has the best 
performance with image set {I , I π

6
, I π

4
, S} and the worst performance with image set {I , Iπ } , as shown in Fig. 5. 

On one hand,the input images of the image set with 2 images are I and Iπ , which provide no innovation but the 
same LSI to the network (see Fig. 2). On the other hand, the input images of the image sets with 4 images have 
different LSIs and thus provide more information to the network. This is the reason for the results in Fig. 5.

Considering the results in Table 1 and Fig. 5, we set the sub-image blocks number to N = 6 and the input 
image set to {I , I π

6
, I π

4
, S} in the proposed method for subsequent experiments.

Experiment results. Table 2 shows the direct results of our proposed method and the eight state-of-the-
art methods on the six standard datasets. However, there are 7 datasets in Table 2, because the UFG datasets 
includes a soybean dataset and a cotton dataset. Moreover, we use our proposed method with the backbone of 
ResNet-50 as statical test to compare the examined methods. For CUB dataset, our proposed method achieves 
1.58%, 3.6%, 1.55%, 0.66%, 0.31%, 0.56%, 3.99% , and 0.47% improvements over ResNet-502, VGG-161, NTS-
Net4, fast-MPN-Cov3,  DCL5, Cross-X6,  MOMN8, and  ACNet22; for CAR dataset, our proposed method achieves 
1.37%, 4.74%, 1.97%, 3.68% , 0.11%, 0.11%, and 6.04% improvements over ResNet-502, VGG-161, NTS-Net4, 
fast-MPN-Cov3,  DCL5, Cross-X6, and  MOMN8, and similar accuracy as  ACNet22; for AIR dataset, our proposed 
method achieves 1.14% , 0.56%, 2.73%, 0.62%, 0.30%, 1.04%, 5.55%, and 2.23% improvements over ResNet-502, 
VGG-161, NTS-Net4, fast-MPN-Cov3,  DCL5, Cross-X6,  MOMN8, and  ACNet22; for FLO dataset, our proposed 
method achieves 1.81%, 2.79%, 1.74%, 0.83%, 0.67%, 1.04%, 0.01%, and 0.28% improvements over ResNet-502, 
VGG-161, NTS-Net4, fast-MPN-Cov3,  DCL5, Cross-X6,  MOMN8, and  ACNet22. Table 2 indicates that the perfor-

Table 1.  Accuracy of the proposed method.

The number of sub-image blocks N = 1 N = 2 N = 4 N = 6 N = 8

Accuracy (%) 54.41 58.53 59.23 59.70 58.95

Table 2.  Comparison with the state-of-the-art methods on six different standard datasets. Significant values 
are in [bold].

Method Base Model

Accuracy (%)

Cotton Soybean CUB CAR AIR FLO PD

ResNet-502 ResNet-50 52.17 39.83 84.20 90.92 89.74 95.35 96.33

VGG-161 VGG-16 49.80 38.46 82.18 87.55 90.32 94.37 –

NTS-Net4 ResNet-50 51.30 43.80 84.23 90.32 88.15 95.42 –

fast-MPN-Cov3 ResNet-50 49.85 38.35 85.12 88.61 90.26 96.33 –

DCL5 ResNet-50 53.92 46.03 85.47 92.18 90.58 96.49 –

Cross-X6 ResNet-50 50.83 43.56 85.22 92.18 89.84 96.12 93.63

MOMN8 ResNet-50 43.34 37.58 81.79 86.25 85.33 97.15 98.58

ACNet22 ResNet-50 55.32 51.60 85.31 92.29 88.65 96.88 –

Ours VGG-16 53.24 46.60 84.20 91.06 88.52 96.62 –

Ours ResNet-50 60.83 53.67 85.78 92.29 90.88 97.16 98.88

Figure 5.  The impact of different input image sets on FGVC performance.
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mance of our proposed method is better than that of the benchmark methods. The reason is that the network can 
learn more LSI of feature from each input image by using our proposed method. In other words, our proposed 
method can better depict the properties of different features in images. Furthermore, it can be observed from 
Table 2 that our proposed method achieves far better performance on datasets with a limited number of images 
such as the cotton and soybean datasets. The reason is that the accurate extraction of LSI of different features in 
images has a more significant impact on the performance of FGVC in a dataset with a limited number of images.

For UGG, CUB, CAR, AIR, and FLO images, their corresponding feature maps of the last convolution layer 
of our method and two benchmark methods (ResNet-502 and  DCL5) are shown in Fig. 6. For PD images, their 
corresponding feature maps of the last convolution layer of our method and two benchmark methods (ResNet-502 
and  MOMN8)are shown in Fig. 6. It can be seen from Figs. 6 and 7 that the feature maps of each method has a 
significant difference. Compared with the three other benchmark methods, our method concentrates on learn 
the overall structure information of the objects. Therefore, the interference of the surrounding environment on 
FGVC can be effectively suppressed.

The results in Table 2, Figs. 6 and 7 indicate that our proposed method has better performance than the existed 
methods. The main reason is that the proposed method can obtain the complete local structural features from 
input images by extracting LSI along multiple filter orientations. By this way, the sufficient LSI of each input 
image can be used for analyzing the properties of different salient regions and performing more effective FGVC. 
In other words, adding the proposed LSI learning module into a given backbone network can enhance the ability 
of the network to find salient regions.

Images ResNet-50 DCL Ours

Figure 6.  Feature map visualization of our method and two other methods based on the last convolution layer 
of ResNet-50 backbone.

ResNet-50 MOMNImages Ours

Figure 7.  Feature map visualization of our method and two other methods based on the last convolution layer 
of ResNet-50 backbone.
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Furthermore, we report our inference time on a NVIDIA Geforce GTX TITAN with PyTorch implementa-
tion. The running time on an image of size 384× 384 is about 31 ms which means that our proposed method is 
computationally efficient in practical applications.

Conclusion
In this paper, a novel LSI learning framework is proposed for FGVC. Firstly, the way of accurately extracting LSI 
from each input image is illustrated for the network to properly describe the properties of different features in 
images. Secondly, our framework for LSI learning is proposed. Thirdly, the performance of our proposed method 
is compared to that of the eight benchmark methods. Simulation results show that our proposed method has 
better ability in FGVC. Particularly, our proposed method has much better performance in dealing with the 
datasets with a limited number of images. It is worth to note that our proposed LSI learning mechanism has 
no obvious performance advantage when used for image object detection. In the following, we will extend the 
proposed mechanism to  transformer48 and apply it for other image processing tasks such as object detection, 
image segmentation, and object tracking.

Data availibility
The code that supports the results within this paper is not publicly available due commercial application in surface 
defect inspection but are available from the corresponding author on reasonable request.
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