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SimTune: bridging the simulator 
reality gap for resource 
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computing
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Industries and services are undergoing an Internet of Things centric transformation globally, giving 
rise to an explosion of multi-modal data generated each second. This, with the requirement of low-
latency result delivery, has led to the ubiquitous adoption of edge and cloud computing paradigms. 
Edge computing follows the data gravity principle, wherein the computational devices move closer to 
the end-users to minimize data transfer and communication times. However, large-scale computation 
has exacerbated the problem of efficient resource management in hybrid edge-cloud platforms. In this 
regard, data-driven models such as deep neural networks (DNNs) have gained popularity to give rise 
to the notion of edge intelligence. However, DNNs face significant problems of data saturation when 
fed volatile data. Data saturation is when providing more data does not translate to improvements 
in performance. To address this issue, prior work has leveraged coupled simulators that, akin to 
digital twins, generate out-of-distribution training data alleviating the data-saturation problem. 
However, simulators face the reality-gap problem, which is the inaccuracy in the emulation of real 
computational infrastructure due to the abstractions in such simulators. To combat this, we develop 
a framework, SimTune, that tackles this challenge by leveraging a low-fidelity surrogate model of the 
high-fidelity simulator to update the parameters of the latter, so to increase the simulation accuracy. 
This further helps co-simulated methods to generalize to edge-cloud configurations for which human 
encoded parameters are not known apriori. Experiments comparing SimTune against state-of-the-
art data-driven resource management solutions on a real edge-cloud platform demonstrate that 
simulator tuning can improve quality of service metrics such as energy consumption and response 
time by up to 14.7% and 7.6% respectively.

In recent years, the technological landscape has seen a swift integration of the Internet of Things (IoT) driven 
infrastructures1. The fundamental driving factor for this transformation has been the increase in computational 
capacity as well the decrease in costs of computational devices1. As computation has become more afford-
able and accessible, the enormous amounts of data generated from IoT sensors and actuators have fueled the 
growth of paradigms such as edge and cloud computing2. To eschew sending all data to cloud backends that 
have high communication-latencies, recent solutions leverage compute resources at the edge of the network3. 
Having resources closer to the users facilitates the reduction of data processing times and improves the user-
perceived Quality of Service (QoS)3. However, as the number of computing resources grows and the applica-
tion workloads exhibit non-stationary fluctuations at small timescales, managing such resources becomes even 
more complex4. Static heuristic-based solutions are ineffective in such settings, and contemporary solutions rely 
on data-driven methods, such as Deep Learning (DL). One such DL approach, namely deep neural networks 
(DNNs), has become increasingly popular in managing hybrid edge-cloud platforms. DNN based methods have 
shown promise in effectively handling large-scale computational infrastructures, thanks to their high modeling 
accuracy and the ability to adapt in volatile settings if supplied enough data4. In this work, we leverage DNNs 
for effective resource management in edge-cloud computing platforms to revolutionize the computing landscape 
and optimize service delivery.
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Challenges.  The problem of efficient resource management in edge-cloud platforms is challenging. This is 
prominent in the case of task scheduling, which refers to the placement of incoming tasks on available resources 
to optimize QoS. As the number of incoming tasks and edge-cloud devices increases, effectively scheduling 
tasks becomes challenging5. This is exacerbated by the non-stationary characteristic of most contemporary 
applications6. Even with modern neural network based solutions, most methods are unable to effectively adapt 
to non-stationary scenarios. In particular, as neural networks are trained on a set of pre-collected data, they tend 
to learn data patterns within the given data. Such data could be in the form of application execution traces in an 
edge-cloud environment, including the resource utilization characteristics, such as the CPU, Memory, Disk and 
Network bandwidth consumption of the running workloads on the computing devices. The trained DNNs can 
then predict, for instance, the utilization characteristics in a future timestep, facilitating online resource man-
agement. This also allows us to use neural networks as surrogates to QoS scores and as an aid to optimization6,7. 
However, DNNs tend to face the problem of data saturation, which is when giving more traces to the model does 
not improve its predictive performance6,8. This has been identified as a common issue in the past8, specifically 
due to the exposure bias at training time that is characteristic of the specific edge-cloud configurations used to 
generate the training data6.

Existing methods and critique.  The problem of data saturation in neural network based resource man-
agement methods has been addressed to some extent using coupled simulators, also referred to as co-simula-
tors in the literature6. Other methods combine analytical methods with neural networks to simulate a physical 
environment9,10. However, such methods typically model a small set of specific aspects of a simulator, such as 
energy consumption or response time, using a low-fidelity DNN surrogate. Typically, such methods are not 
robust enough to be applicable to a generic simulator. Unlike the low-fidelity surrogates that directly predict QoS 
estimates for a future timestep, simulators have encoded information regarding the behavior characteristics of 
edge-cloud devices11, allowing them to perform a high-fidelity estimation of QoS scores. However, such infor-
mation is typically encoded in simulators as system parameters by human experts12,13. These parameters include 
the typical communication latencies, the power consumption profiles, and task allocation overheads in edge and 
cloud machines14. In co-simulation driven methods, akin to a digital twin, an event-driven simulator is used to 
virtually execute multiple decisions and observe how they affect the environment and QoS scores. This enables 
us to explore out-of-distribution data, enabling the neural model to generalize to settings previously unseen 
during training and alleviate data saturation15. Additionally, a simulator could also facilitate injecting informa-
tion regarding the system behavior within the surrogate optimization methods. Further, volatile scenarios can 
undergo significant shifts in the data trends, such as the resource utilization time series of running workloads. 
This is referred to as high-dynamism in edge-cloud setups16. Such shifts in trends can also be very frequent, 
referred to as high-volatility in edge-cloud environments17. Co-simulators can also facilitate obtaining additional 
data online without executing resource management decisions in the real infrastructure, facilitating the neural 
models to adapt to dynamism and volatility. However, co-simulation based methods face two critical drawbacks. 
First, it has been observed that the simplifications and assumptions in setting the human-encoded simulator 
parameter give rise to a reality gap between the estimates generated by the simulators and those from actual exe-
cution in the real environments18. This diminishes the credibility of using simulators to avoid data saturation as 
now the bias leaks into the co-simulation pipeline due to the assumptions made by human experts while settings 
the simulator parameters. Second, in the case of highly volatile workloads, executing several simulations may be 
time inefficient or computationally heavy, making it ineffective in large-scale setups with resource-limited edge 
devices that run such simulations.

Contributions.  In this work, we aim to address both drawbacks of co-simulation based methods highlighted 
above. We develop a novel framework, called SimTune, which aims to tune the simulator parameters to bridge 
the reality gap and improve simulated estimates. The key insight that we use is to leverage a DNN based surro-
gate model that acts as a low-fidelity twin of the simulator. This surrogate model uses the hand-encoded simula-
tor parameters, environment and workload characteristics to generate QoS estimates. It is trained to mimic a 
high-fidelity simulator in terms of how close it can match the QoS estimates. Considering a trace generated from 
a real environment, this surrogate is then used to update the simulator parameters, both offline and online, such 
that the reality gap between the simulated estimates and ground-truth values is minimized. The tuned simulator 
parameters are then used to perform data augmentation to support data-driven schedulers. Experiments with 
multiple state-of-the-art schedulers on a real edge-cloud platform demonstrate that the tuned simulator can 
improve QoS scores compared to hand-encoded parameters and baseline tuning methods. Specifically, SimTune 
reduces energy consumption and response time by up to 14.7% and 7.6% respectively compared to baselines in 
an edge-cloud platform with DL based workloads.

Outline.  The rest of the paper presents a brief background with motivation and related work in “Background 
and related work” Section.  “Methodology” Section presents the system model, problem formulation and the 
SimTune methodology. We then validate and show the efficacy of the SimTune based resource management poli-
cies in “Evaluation” Section. Finally, “Conclusions” section concludes the work and proposes future directions.

Background and related work
Many data-driven scheduling methods have been proposed to effectively manage resources in edge-cloud com-
puting environments. Such methods typically rely on data-driven DNNs to generate QoS estimates and run 
gradient-free or gradient-based optimization in the decision space to optimize objective scores.
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Scheduling methods.  Most state-of-the-art scheduling methods utilize DNNs or search strategies to find 
optimum scheduling decisions19. For instance, a line of work uses evolutionary search approaches such as par-
ticle swarm optimization (PSO) using a trained DNN based QoS surrogate20–22. Other methods utilize genetic 
algorithms for QoS aware decision optimization23,24. Typically, such approaches run a gradient-free search 
scheme with non-local jumps, using cross-over and mutation-like operations to converge towards an optimum. 
However, gradient-free methods are known to take much longer to converge25 and are not as scalable26 as gra-
dient-based methods. This problem is alleviated by gradient-free optimization in schedulers such as GOBI6 and 
GOSH7. Such methods take the scheduling decision and state of the edge-cloud system as resource utilization 
characteristics of workloads and Fog nodes and output a QoS estimate. Using backpropagation to input6, i.e., fix-
ing the neural network parameters and updating the scheduling decision based on the gradient of DNN output, 
these methods find the optimal scheduling decisions. However, continuous approximation of a discrete optimi-
zation problem is known to give sub-optimal decisions in some cases27 and thus, we consider both gradient-free 
and gradient-based schedulers in this work. Another category of methods is the ones that leverage reinforce-
ment learning, popular in discrete-time control optimization settings such as distributed computing28–30. Such 
methods rely on deep neural networks that directly predict decisions instead of QoS estimates. For instance, 
some methods model the scheduling problem as a Markov Decision Process (MDP) and use a deep-reinforce-
ment learning strategy, namely deep Q-Learning (DQL) to schedule workloads in a heterogeneous computing 
environment28–30. Policy gradient methods, such as31, train a DNN to predict the optimal scheduling decision 
instead of Q values directly. A recent method, Asynchronous Advantage Actor-Critic (A3C), is a policy gradient 
method that schedules workloads using an actor-critic pair of DNN agents32. These methods rely on data traces 
to train their models and make resource management decisions in edge-cloud environments. We consider these 
methods in our evaluation to test the efficacy of a tuned simulator on QoS for offline training and online fine-
tuning of the neural networks used in such methods.

Simulator tuning.  The concern of the reality gap in simulators has been highlighted in the past, albeit 
in domains other than resource management13,18. The root cause of simulations being far from realism is the 
improper tuning of the simulation parameters for diverse scenarios that need to be simulated. For instance, in 
an edge simulator that simulates the energy consumption of edge devices for a given set of workloads, the power 
profile is often set by human experts using existing profiling data33. However, this profile, i.e., power consump-
tion for varying utilization of the CPU may change based on the temperature of the ambient environment, cool-
ing solutions as well as device characteristics. Thus, having a preset profile curve may not be helpful in unseen 
configurations. Such simplifying assumptions give rise to the discrepancies between simulated and true metric 
values. Considering the growing complexity of modern simulators with millions of parameters, each with mil-
lions of possible values, running a brute-force approach is intractable. To address this, prior work has leveraged 
evolutionary optimization strategies such as Sim2Real18. Sim2Real iteratively updates the simulator parameters, 
performs simulations and evaluates the deviation between the simulated and true values. However, for complex 
simulators, running a high-fidelity simulation each time has a high computational overhead, thus, limiting the 
number of iterations that can be performed to update the parameters. Another method, DiffTune13, uses a dif-
ferentiable surrogate model that can quickly generate simulated scores and can be used to update the simulation 
parameters. However, DiffTune can only be used to tune simulator parameters offline, where we cannot use the 
surrogate to perform online data augmentation and fine-tuning of the scheduling methods. DiffTune assumes 
a differentiable surrogate and a continuous approximation of the discrete optimization problem; this may not 
be ideal in most settings as many simulation parameters typically take categorical values. We solve this issue in 
our work by developing a deep neural network based low-fidelity simulator and using gradient based parameter 
update. These assumptions constrain us to utilizing a restrictive set of neural or analytical models to optimize 
simulation parameters. Forgoing these assumptions, and using more accurate neural models (such as with non-
linear activation functions such as ReLU or sigmoid) with sub-gradients and rounding, limits the performance 
of such methods34,35. We empirically demonstrate this in "Evaluation" section.

Methodology
System model.  In this work, we assume a typical edge-cloud computing environment with multiple het-
erogeneous edge and cloud nodes in a broker-worker setup6,12,24. An overview of the system model is presented 
in Fig. 1. All workloads are generated in the form of data and processing tasks from the users. The data is col-
lected through IoT sensors and passed to the computational setup via gateway devices such as smartphones and 
smartwatches. This is typical in smart-home or smart-hospital like environments that aim to utilize data and 
AI applications to process it, for instance, to run energy optimization or for patient care4. Each task also has 
expected QoS metrics such as service deadline associated. Such deadlines are also referred to as Service Level 
Objectives (SLOs). The tasks are realized in the form of virtualized Docker container applications to allow ease of 
management and secure computing36. The container applications and SLOs are relayed to the edge-cloud broker, 
which takes all resource management decisions. It monitors the edge and cloud nodes and generates traces of 
system characteristics such as resource utilization and QoS metrics. The broker also leverages a discrete event-
driven high-fidelity simulation in tandem with a low-fidelity surrogate model to run the SimTune approach. The 
tuned simulator is used by the scheduler to decide optimal scheduling decisions. The decision is enacted in the 
physical environment in the form of container allocation or migration to respective edge or cloud nodes. Fur-
ther, we assume a bounded execution timeline, which we divide into fixed-size scheduling intervals. We consider 
a bag-of-task workload model wherein a set of new tasks is created at the start of each interval and all tasks can 
be scheduled independently.
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Formulation.  As described above, we consider a bounded timeline discretized into fixed-size intervals, each 
of � seconds. We denote the t-th interval by It , where t ∈ {1, . . . ,T} . We define the state of the edge-cloud envi-
ronment as the collection of resource utilization metrics including CPU, RAM and Disk of the host machines. 
This also includes the network topology of the system as a graph with each edge consisting of parameters such 
as latency and network bandwidth. We denote the state at the start of interval It by Gt . We also denote the time-
series workload characteristics and scheduling decisions in the form of utilization of the CPU, RAM, Disk and 
Network bandwidth and one-hot encoding of the host allocations, up to interval It by Wt . The high-fidelity 
simulator is denoted by a function

where φt denotes the simulator parameters in interval It and Qt denotes the set of QoS parameters at the end of 
It . Thus, the simulator acts as a high-fidelity model that simulates the scheduling decisions in Wt to estimate the 
QoS parameters at a future timestep. We denote the measured QoS metrics at the end of It by Q̄t . Considering a 
trace of system states, workload characteristics and QoS metrics T = {(W0,G0, Q̄0), . . . , (WT ,GT , Q̄T )} , we can 
generate a simulated QoS trace by following equation (1) for each timestep t. This gives us a simulated trace as 
{Q0, . . . ,QT } . Considering QoS metrics as dense vectors, we can quantify the reality-gap for a set of simulator 
parameters φt∀t as the L2 norm

As has been observed in the past that data-driven schedulers rely on simulated estimates to optimize resource 
management decisions6,7, we need to ensure that we can bridge the reality gap to avoid bias and inaccuracies due 
to poorly set simulator parameters. Bridging this gap would translate to higher quality training data generated 
via simulators and directly translate to higher QoS scores (we demonstrate this in "Evaluation" section). Thus, 
our objective is to minimize the reality gap to ensure that the simulated estimates are close to the physically 
generated ones. This can be formulated as

SimTune.  As we do not have Qt at the start of It , the above optimization problem cannot be solved offline 
with a collected trace of on-the-fly metric-data after each timestep. To find optimal φt at each timestep, we lever-
age a DNN based model to develop a low-fidelity surrogate model of the simulator that takes in the simulator 
inputs, its parameters and outputs another set of QoS estimates

where θ denotes the parameters of the neural network. Now that we have both high and low fidelity models of 
the physical environment, we update the simulator parameters in three steps summarized in Fig. 2. First, we 
update the neural network parameters ( θ ) to minimize the loss function

for each timestep t. This ensures that the converged parameters, say θ∗ , are such that the surrogate model closely 
represents the simulator. This allows us to utilize f̂  as a proxy of f and generate an estimate of Qt for a timestep 
t. Second, we fix the parameters θ∗ and update the simulator parameters φt to minimize the reality gap of the 

(1)Qt = f (Wt ,Gt;φt),

(2)RGt =
∥∥Q̄t − Qt

∥∥.

(3)
minimize.

φt≥0∀t

T∑

t=1

RGt = �Q̄t − Qt�

s.t. Qt = f (Wt ,φt ,Gt; θ),∀ t.

(4)Q̂t = f̂ (Wt ,φt ,Gt; θ),

(5)Lt =
∥∥∥Qt − Q̂t

∥∥∥,

Figure 1.   System model.
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simulator by utilizing the reality gap of the surrogate as a proxy. Advances in optimization of neural network 
parameters ( θ ) such as momentum and cosine annealing facilitate quick and scalable optimization also of φt , 
which stands in contrast to typical simulators that do not allow this6. To do this, vanilla stochastic gradient 
approaches can be used to update φt at each timestep till convergence using

where γ is the step size. The above equation gives us an iterative rule to update the simulation parameters such 
that the reality gap between the trained surrogate and the real trace is minimized. However, the above assumes 
a continuous relaxation of categorical simulation parameters such as the number of cores in a host machine (a 
natural number) or whether hardware acceleration or hyper-threading is supported by a machine (binary value). 
To circumvent this, we use Gradient-Directed Monte-Carlo (GDMC) optimization37. To do this, we perform 
discrete perturbations to φt and build a tree from the current value. Each node in the tree is represented as an 
ordered pair (v,φt , n) where φt is the parameter value set, vi is a value estimate and n is the frequency of visits to 
that node. Each node has multiple child nodes {(φi

t , n
i)}i where we select a node in each Monte-Carlo selection 

stage such that the Upper-Confidence-Bound

is minimized, where c is an exploration parameter. The ∇φt�Q̄t − f̂ (Wt ,φt ,Gt; θ
∗)� term aims to select nodes 

in the direction of the gradient and the 
√

c ln n
ni

 term ensure other perturbations are also explored. As we select 
child nodes, we calculate vi = �Q̄t − f̂ (Wt ,φ

i
t ,Gt; θ

∗)� . After each such computation for a leaf node of the tree, 
we backpropagate values such that v becomes the frequency weighted average of vi ’s of its child nodes. As we 
perform multiple roll-outs and visit frequencies increase, the third term diminishes in value and we perform 
higher exploitation than exploration. Finally, we choose the simulation parameter with the highest vi . Performing 
the above iteratively to update φt we obtain φ∗

t  such that the reality gap of the surrogate is minimized. Finally, 
we use the φ∗

t  parameters to generate data using the simulator to train the data-driven scheduler. We can also 
leverage the low-fidelity surrogate to perform on-the-fly φt optimization to generate φ∗

t  at each interval.
This pipeline offers three key advantages compared to prior work. First, as a neural network offers quick 

and scalable inference, we can also leverage it for online data generation and tuning of the scheduler. Second, 
optimization methods based on backpropagation to input have shown promise in the past and have a signifi-
cant advantage of being able to optimize inputs quickly to minimize simulation tuning time. Third, with each 
incoming data point, we can fine-tune θ and then simulator parameters φt to dynamically adapt the simulation 
parameters as the workload and system characteristics change with time.

Low‑fidelity surrogate model.  As described in "Introduction" section, we realize the low-fidelity model 
using a deep neural network. An overview of the neural network architecture is presented in Fig. 3. In the rest 
of the discussion we drop the subscript that identifies timestep t without loss in generality. To infer the temporal 
trends in the workload characteristics, we leverage a Transformer model for their improved learning efficiency38. 
A Transformer is a multi-head attention based neural model that has been shown to be more scalable than clas-
sical recurrent modelling approaches38. Thus,

(6)φt ← φt − γ · ∇φt

∥∥∥Q̄t − f̂
(
Wt ,φt ,Gt; θ

∗
)∥∥∥,

vi −∇φt

∥∥∥Q̄t − f̂
(
Wt ,φt ,Gt; θ

∗
)∥∥∥−

√
c ln n

ni

(7)
W1 = TransformerEncoder(W),

W2 = ReLU(FeedForward(W1)).

Figure 2.   SimTune pipeline.
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However, in this feed-forward network, we use Monte-Carlo Dropout (MCD) for Bayesian inference at test time39. 
Unlike conventional dropout, MCD enables dropout at inference time as well. This allows us to run inference 
multiple times and obtain a stochastic output, specifically to model the volatile nature of workload characteristics. 
To infer the simulator parameters, we use a feed-forward network,

where the LayerNorm operation normalizes the output for stable training. The skip-connection between the 
output of the first feed-forward network and the second facilitates faster propagation of gradients and improved 
accuracy40. We also infer over the system state, i.e., the edge topology graph using a graph neural network41. We 
first form a fully connected graph with all hosts represented as graph nodes. The characteristics of the host hj 
are denoted by ej . We then pass the graph through a gated-graph convolution network to capture the inter-host 
dependencies rising from the new task allocation. Here, the features for host hj are aggregated over all other hosts 
in the graph over r convolutions, resulting in an embedding ejr for each host node in the graph. Specifically, the 
gating stage is realized as a Gated Recurrent Unit (GRU) resulting in graph-to-graph updates41 as:

where the second equation performs the convolutions of the features of immediate neighbors in the graph. How-
ever, for large-scale graphs, to ensure that we capture the inter task and host correlations, we perform the above 
convolution step r times. Here, a GRU is a recurrent neural network that decides the weightage of the output of 
the previous convolution iteration with respect to the latest iteration. This allows the model to efficiently scale 
with the size of input graph without significantly losing performance. The stacked representation for all hosts is 
represented as G1 . The three encodings are then concatenated and send to the Transformer decoder to generate 
a vector of QoS metrics as

The sigmoid activation function makes the output in the range (0, 1), giving us normalized QoS scores. Overall, 
the objective of the neural network is to infer the simulated QoS metrics using the workload characteristics, 
simulator parameters and system information.

Offline scheduler training.  To train the surrogate model, we use a random scheduler and random per-
turbations to the simulator parameters to generate a dataset trace {(Gt ,φt ,Wt ,Qt)}t . This enables us to cover a 
large input state-space. Using such a trace, we can train a surrogate model f̂ (Wt ,φt ,Gt; θ) by minimizing the 
loss function

to give converged network parameters θ∗ . Using this, and a trace from a physical system {(Gt ,Wt ,φt , Q̄t)}t , we 
tune simulator parameters to get φ∗

t  . The model is trained using normalized QoS metrics from the simulator and 
real-systems. Now that we have a high-fidelity scheduler f and a low-fidelity surrogate f̂  , we can utilize them to 
train a scheduler g that generates scheduling decisions for an input state of the system. We denote the schedul-
ing decision for interval It by Dt = g(Gt ,Wt) . As such schedulers are typically data-driven, we leverage traces 
using random schedulers generated by the tuned simulator f (·;φ∗

t ) . Using such a simulator, we generate a trace 
of system states and simulated QoS estimates as {(Gt ,Wt ,Qt)}t to train g.

(8)
φ1 = ReLU(FeedForward(φ)),

φ2 = ReLU(LayerNorm(FeedForward(φ1)+ φ1)).

(9)

e
j
0 = tanh

(
W ej + b

)
,

x
j
q =

∑

j

Wqe
j
q−1,

e
j
q = GRU

(
e
j
q−1, x

j
q

)
,

(10)
E1 = TransfomerDecoder

(
W2,φ2, G1

)
,

Q̂ = Sigmoid
(
FeedForward

(
E1
))
.

(11)L =
∑

t

Lt =
∑

t

∥∥∥Qt − f̂ (Wt ,φ
∗
t ,Gt; θ)

∥∥∥,

Figure 3.   Low-Fidelity surrogate of the simulator in SimTune in the form of a neural network. The inputs 
include workload characteristics as time-series values, simulator parameters and edge topology as a fully-
connected graph. The output is a vector of QoS estimates.
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Algorithm 1 Online Scheduling in SimTune
Require:

Tuned simulator f
Pre-trained surrogate model f̂
Pre-trained scheduler g

1: procedure SIMTUNE(scheduling interval It )
2: Get Gt ,Wt �Monitor system
3: Dt ← g(Gt ,Wt) � Generate scheduling decision
4: Enact scheduling decision Dt in the system � Enact scheduling decision
5: Get Gt+1,Wt+1 �Monitor system at the end of the interval
6: Minimize ‖Q̄t+1− f̂ (Wt+1,φ

∗
t ,Gt ;θ ∗)‖ using GDMC to obtain φ∗

t+1 � Update simulation parameters

7: Utilize φt+1 to generate dataset {(Gt ,Wt ,φ
∗
t+1, Q̂t)}t+1 using f̂ � Generate additional dataset

8: Tune g using {(Gt ,Wt ,φ
∗
t+1, Q̂t)}t+1 � Tune scheduler to adapt to dynamic settings

9: end procedure

Online scheduling.  We now describe how the SimTune framework aids in informed decision making. An 
overview is presented in Algorithm 1. Having a trained scheduler g, we generate scheduling decisions at the 
start of each interval It as Dt = g(Gt ,Wt) (line 3). To account for dynamism in the system, at the end of each 
interval It , we form another datapoint by estimating QoS Q̂t+1 for given state (Gt+1,Wt+1) using φ∗

t  and updating 
φ∗
t  to φ∗

t+1 by minimizing the surrogate reality gap �Q̄t+1 − f̂ (Wt+1,φ
∗
t ,Gt; θ

∗)� (lines 5–6). This allows us to 
dynamically tune simulator parameters to minimize the reality gap online. Using the new parameter set φt+1 , we 
generate additional dataset {(Gt ,Wt ,φ

∗
t+1, Q̂t)}t+1 to fine-tune the scheduler model g (lines 7–8). Note that we 

utilize the QoS estimates of the surrogate f̂  to ensure that multi-step simulation traces can be generated quickly, 
minimizing overall decision time of the framework. This additionally allows us to make decisions informed on 
the new simulator parameters and consequently the updated system trends.

Evaluation
Testbed.  We consider a hybrid edge-cloud computing setup with 16 Raspberry Pi 4B nodes, 8 with 4GB 
RAM and another 8 with 8GB RAM each. This allows the setup to have heterogeneous nodes with different 
memory capacities. Our cloud environment consists of 34 virtual machines provisioned from Microsoft Azure 
cloud platform. We use diverse VM types in our cloud infrastructure, i.e., B2s with a dual-core CPU and 4GB 
RAM, B4ms with a quad-core CPU and 16GB RAM and B8ms with an octa-core CPU and 32GB RAM. We 
consider a geographically distributed cloud environment. Our environment consists of 20 VMs in the UK-
South Azure datacenter and 14 in the East-US datacenter. The UK-South cluster consist of 10 B2s and 10 
B4ms nodes, while our East-US cluster consists of 7 B4ms and 7 B8ms nodes. Our resource management 
policies are run on a cloud broker node in the UK-South location and is a D16asv4 node with a 16 core 
CPU and 64 GB RAM. The execution costs are taken from Azure pricing calculator42. The power consumption 
values of increments of 10% CPU utilization of Azure VM types are taken from the COSCO simulator6,43, which 
includes the power consumption characteristics of B2s, B4ms and B8ms Azure VMs derived from the Stand-
ard Performance Evaluation Corporation (SPEC) benchmark repository44. We ignore the power consumption 
characteristics of the cooling infrastructure as in prior work6,14. As these power characteristics may be on out-of-
distribution workloads and we use the fraction of incoming workload requests as a proxy of CPU utilization, the 
absolute values of the reported energy consumption in this paper are rough estimates.

Workloads.  In order to evaluate the performance of SimTune, we use the AIoTBench benchmarks45. This is 
a widely used AI-based computing benchmark suite that consists of various real-world computer vision applica-
tion instances46. The seven specific application types correspond to the CNN neural networks for image clas-
sification. These include three typical heavy-weight networks: ResNet18, ResNet34, ResNext32x4d, as well as 
four light-weight networks: SqueezeNet1-0, GoogleNet, MobileNetV2, MnasNet. These neural models are from 
various industry applications, showing that this benchmark captures real-world workloads. In terms of the data 
to process, we use 50 images from the COCO dataset47. We use the interval duration in our experiments, i.e., � 
as 5 minutes as per prior work6,30,48. To evaluate the proposed method in a controlled environment, we abstract 
out the users and IoT layers described in "Methodology" section and use a discrete probability distribution to 
realize tasks as container instances. Thus, at the start of each scheduling interval, we create new tasks from a 
Poisson distribution with � = 1.2 , sampled uniformly from the seven applications6. The distribution is a natural 
choice for a bag-of-tasks workload model, common in edge environments49,50. Each task has an associated SLO 
deadline generated from prior work6. When the response time exceeds its deadline, we call that a violation of the 
SLO. Our tasks are executed using Docker containers. We run all experiments for 100 scheduling intervals, with 
each interval being 300 seconds long, giving a total experiment time of 8 hours and 20 minutes. We average over 
five runs and use diverse workload types to ensure statistical significance in our experiments.

Model training and assumptions.  For training, we randomly split the dataset into 80% training and 20% 
testing data. We use a learning rate of 10−4 with a weight decay of 10−5 in the Adam optimizer for optimizing the 
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loss function. The learning rate parameter was set as per grid-search to minimize the reality gap loss mentioned 
in equation (11). We use the early stopping criterion for convergence.

Baselines.  We compare SimTune against four baselines as described below. Each of these methods is for tun-
ing the simulator parameters, which we compare against SimTune across six state-of-the-art schedulers: PSO, 
GA, DQL, A3C, GOBI and GOSH (see "Background and related work" section for more details). These have 
been selected to cover diverse classes of scheduling strategies. PSO and GA are search based schedulers, whereas 
DQL and A3C utilize reinforcement learning. GOBI and GOSH use neural network based surrogate models to 
run gradient optimization and find near-optimal scheduling decisions. All schedulers were aimed to minimize 
the normalized energy consumption and average response time of completed tasks6.

•	 Human Set uses the preset simulator parameters to generate the offline and online training data required by 
the scheduling methods.

•	 HGP+ES uses a heteroskedastic Gaussian Process (HGP)51 as a low-fidelity surrogate of the simulator and 
evolutionary search (ES) strategy18 to tune the simulator parameters.

•	 LSTM+SGD uses a Long-Short-Term-Memory (LSTM) neural network with differentiable activation func-
tions motivated from DiffTune13. It also uses stochastic-gradient-descent (SGD) to perform gradient opti-
mization of simulator parameters.

•	 LSTM+Sim2Real also uses an LSTM neural network to act as a low-fidelity surrogate of the simulator with 
a mutation-crossover based evolutionary search strategy to optimize simulator parameters as done in 
Sim2Real18. Akin to Sim2Real and DiffTune methods, HGP+ES, LSTM+SGD and LSTM+Sim2Real utilize 
the high-fidelity simulator to generate the on-the-fly data for online scheduler training. We also do not 
dynamically tune the simulator parameters in these methods13,18.

Evaluation metrics.  To test the efficacy and performance improvement of the SimTune approach, we com-
pare the end-term unnormalized QoS metrics. We compare the energy consumption of the edge-cloud testbed 
described above in terms of KW· hr averaged over the 100 intervals for which we run an experiment. We also 
measure the average response time of the completed tasks in the system. Both energy consumption and response 
time metrics help us to distinguish the efficacy of the schedulers for each tuning (or preset) simulator. We also 
compare the average SLO violation rates of completed tasks. Further, we compare the execution cost (in US Dol-
lars) of cloud machines in terms of the pay-per-use cost as well as the energy consumption cost of edge devices. 
We amortize the overall cost with the number of completed containers. Finally, we also compare the overheads 
of the decision making models by observing the average waiting time of tasks to get allocated to a host and the 
average scheduling time of each approach.

Comparison with baselines.  Figure 4 compares the QoS metrics of SimTune with the baseline methods 
for each of the state-of-the-art schedulers. SimTune outperforms the baselines across most metrics, such as 
reducing energy consumption and response time by up to 14.7% and 7.6%, respectively. Specifically, in terms of 
energy, LSTM+Sim2Real has the lowest consumption of 3.714 KW· hr across all baselines, averaged across all 
schedulers. SimTune reduces this to 3.124 KW·hr, viz, 14.7% lower than the best baseline. SimTune is able to pro-
vide improved energy efficiency compared to the human-set values thanks to the ability to tune the power profile 
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Figure 4.   Comparison of QoS parameters (averaged over intervals) of SimTune against baseline methods.
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characteristics of the edge and cloud hosts. Without simulator tuning, the data-driven schedulers are trained 
using the SPEC power profiles, which may not be ideal representations of the power consumption characteristics 
given the different workload nature of AIoTBench applications. Moreover, in terms of average response time, 
the LSTM+SGD baseline gives 15.45 s amortized across all schedulers. SimTune gives a lower response time of 
14.28 s, 7.6% lower than LSTM+SGD. The improvements in energy consumption and response time are primar-
ily due to the lower reality gap measured in terms of the loss function in Eq. (11). SimTune’s converged loss value 
is 0.0345, whereas the lowest loss among the baselines is of the LSTM+Sim2Real approach with 0.1922. This is 
due to the ability of SimTune to capture both temporal trends using a Transformer encoder as well as spatial cor-
relations utilizing a gated-graph convolution network. The low loss value ensures that the data generated by the 
simulator and the surrogate are closer to the ground-truth values, alleviating the exposure bias problem and fur-
nishing more realistic data to the schedulers. This directly translates to better QoS scores. Lower response times 
if SimTune also leads to significant improvements in terms of SLO violation rates. The lowest average violation 
rate among all baselines is achieved by HGP+ES of 0.153, whereas SimTune gives an average SLO violation rate 
of 0.135, 11.8% lower than the best score. Similarly, we see that SimTune gives the lowest average execution cost 
of 0.650 USD, which is 7.86% lower than the most cost-efficient baseline, i.e., LSTM+Sim2Real with an average 
cost of 0.706 USD. Compared to stochastic gradient descent, the GDMC based parameter updates enables Sim-
Tune to update categorical parameters as well. LSTM+SGD uses continuous relaxation of the parameter updates 
instead, which has been shown to perform poorly compared to GDMC37. This is enabled by the Monte-Carlo 
Dropout for Bayseian inference from the low-fidelity neural network model. Finally, we also see lower schedul-
ing times for the SimTune approach, thanks to the low-fidelity surrogate being used to generate on-the-fly data 
for dynamic scheduler training (line 7 in Algorithm 1). This also translates to lower average waiting times for 
the incoming tasks.

Ablation analysis.  To test the importance of the hybrid approach of SimTune that utilizes both a high-
fidelity simulator and low-fidelity surrogate, we modify the approach as follows. First, we consider a model 
without the high-fidelity simulator to generate offline training data and utilize the surrogate itself. We refer to 
this approach by SimTune w/o HiFi. Second, we replace the low-fidelity surrogate model with the high-fidelity 
simulator to generate data for online training of the scheduler in SimTune. We call this approach as SimTune 
w/o LoFi. Table 1 presents the results of SimTune and the ablation models. Without the high-fidelity simulator 
for offline training (SimTune w/o HiFi), we observe a drop in the QoS metrics; for instance, SLO Violation rates 
increase by 5.4%. This is due to the lack of unexplored simulator configurations by the surrogate leading to poor 
offline training of the schedulers. Further, without the surrogate (SimTune w/o LoFi), the online data genera-

Table 1.   Ablation analysis. Best values are shown in bold.

Approach

Scheduler

PSO GA DQL A3C GOBI GOSH

Interval Energy (KW·hr)

SimTune w/o HiFi 4.772 ± 0.283 4.572 ± 0.360 3.772 ± 0.133 3.428 ± 0.258 4.113 ± 0.186 2.411 ± 0.236

SimTune w/o LoFi 4.262 ± 0.330 4.252 ± 0.267 3.750 ± 0.198 3.334 ± 0.146 3.505 ± 0.045 2.443 ± 0.245

SimTune 3.788 ± 0.020 3.815 ± 0.212 3.295 ± 0.094 3.016 ± 0.049 2.931 ± 0.007 1.900 ± 0.033

Response time (s)

SimTune w/o HiFi 22.800 ± 0.407 18.649 ± 0.374 16.371 ± 0.635 12.669 ± 1.830 13.945 ± 0.722 11.434 ± 0.166

SimTune w/o LoFi 22.471 ± 0.842 17.294 ± 0.833 15.044 ± 0.421 12.818 ± 0.316 11.780 ± 0.607 10.489 ± 0.563

SimTune 21.112 ± 0.201 17.067 ± 0.606 14.179 ± 0.610 12.560 ± 1.175 11.119 ± 0.196 10.287 ± 0.663

SLO violation rate

SimTune w/o HiFi 0.215 ± 0.003 0.177 ± 0.000 0.182 ± 0.015 0.123 ± 0.007 0.141 ± 0.005 0.100 ± 0.011

SimTune w/o LoFi 0.205 ± 0.015 0.166 ± 0.005 0.166 ± 0.005 0.126 ± 0.027 0.129 ± 0.013 0.090 ± 0.005

SimTune 0.190 ± 0.001 0.161 ± 0.011 0.148 ± 0.029 0.113 ± 0.012 0.123 ± 0.020 0.080 ± 0.025

Average execution cost (USD)

SimTune w/o HiFi 1.360 ± 0.066 0.833 ± 0.345 0.737 ± 0.032 0.625 ± 0.041 0.425 ± 0.146 0.426 ± 0.109

SimTune w/o LoFi 1.154 ± 0.076 0.862 ± 0.253 0.739 ± 0.333 0.697 ± 0.129 0.403 ± 0.195 0.399 ± 0.167

SimTune 1.108 ± 0.311 0.784 ± 0.157 0.658 ± 0.344 0.620 ± 0.064 0.370 ± 0.023 0.362 ± 0.171

Scheduling time (s)

SimTune w/o HiFi 0.763 ± 0.207 0.871 ± 0.329 1.235 ± 0.066 0.563 ± 0.217 0.155 ± 0.101 0.090 ± 0.003

SimTune w/o LoFi 1.449 ± 0.201 1.737 ± 0.262 2.469 ± 0.194 1.256 ± 0.326 0.315 ± 0.074 0.205 ± 0.158

SimTune 0.712 ± 0.072 0.814 ± 0.021 1.056 ± 0.342 0.559 ± 0.243 0.145 ± 0.236 0.095 ± 0.185

Waiting time (s)

SimTune w/o HiFi 1.957 ± 0.445 0.928 ± 0.160 1.878 ± 0.225 0.985 ± 0.086 0.378 ± 0.099 0.254 ± 0.450

SimTune w/o LoFi 3.130 ± 0.244 1.277 ± 0.028 3.189 ± 0.146 1.521 ± 0.103 0.568 ± 0.019 0.399 ± 0.214

SimTune 1.576 ± 0.179 0.851 ± 0.064 2.021 ± 0.058 0.944 ± 0.091 0.348 ± 0.086 0.268 ± 0.051
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tion is more time-consuming, which gives rise to higher scheduling and wait times and poorer QoS scores. For 
instance, SLO violation rates increase by 13% when we do not use low-fidelity model. This demonstrates the 
effectiveness of the hybrid high and low fidelity approach of SimTune.

Scalability analysis.  To test the performance of the SimTune approach at different scales we generate QoS 
scores for diverse sizes of the edge-cloud testbed. We perform a controlled experiment with 1:2 ratio of edge and 
cloud nodes where we use equal number of 4GB and 8GB RAM Raspberry Pi 4B nodes in our edge environment 
and B2s cloud VM type in UK-South. We vary the number of edge devices from 2 to 16, with number of cloud 
nodes being 4 to 32. This gives the total number of nodes from 6 to 48. We keep the � parameter proportionate to 
the size of the setup. For the 6 node setup � = 0.16 and for the 48 node setup � = 1.28 . The scores with different 
sizes of the network, averaged over all scheduling methods, are shown in Fig. 5. As the number of nodes increase, 
so does the energy consumption and execution cost. However, SimTune gives the lowest energy consumption 
and operational costs across all models. Response time and SLO violation rates do not show significant devia-
tion for the baseline models. Due to the high chance of contention in case of limited number of devices, we see 
that response time and consequently SLO violation rates are typically higher for 9 or less nodes. Even in such 
cases SimTune gives better scores compared to baselines. This is primarily due to the ability of the gated graph 
convolution network to effectively scale performance with the size of the input graph52. We also compare the 
tuning time of the simulator parameters for the different number of nodes in the setup in Fig. 6. When the simu-
lator parameters are static and Human Set, there is no tuning overhead. However, this limits its performance in 
non-stationary settings where dynamic parameter updates may be required. Within the parameter update based 
methods, SimTune has the lowest tuning time thanks to its Transformer based design that allows us to furnish 
all tuning data together in lieu of the auto-regressive inference style in recurrent models such as LSTM+SGD 
and LSTM+Sim2Real.

Conclusions
This paper proposes SimTune, a framework to bridge the reality gap between the simulated and ground-truth 
QoS traces. SimTune leverages a low-fidelity neural network based surrogate model to tune the parameters of a 
high-fidelity simulator. The SimTune approach trains the neural network surrogate to mimic the simulator and 
updates the simulator parameters using the surrogate reality gap as a proxy and updating parameters using a 
gradient-based Monte-Carlo search strategy. The updated parameters are then used to generate offline data using 
the simulator and online data using the surrogate to train a data-driven scheduler. Experiments with real-life 
AI-based benchmark applications on a heterogeneous edge-cloud testbed show that SimTune gives at least 14.7% 
lower energy consumption, 7.6% lower response times and 11.8% lower SLO violation rates compared to state-of-
the-art baselines. This demonstrates the importance of simulator tuning for optimal QoS in the domain of edge 
intelligence. Future work would investigate the application of the SimTune approach to also include additional 
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Figure 5.   Scalability Analysis of SimTune and baselines with different number of nodes in the edge-cloud setup.
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resource management decisions such as resource provisioning and autoscaling53. We also aim to explore the 
application of SimTune in the domain of fault-tolerant computing.

Data availability
All data and code used for the current study are available from the corresponding author on reasonable request.

Code availability
The code and relevant training scripts are made publicly available on GitHub under BSD-3 licence at https://​
github.​com/​imper​ial-​qore/​SimTu​ne with a snapshot of the paper version available at https://​doi.​org/​10.​5281/​
zenodo.​72739​16.
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