
1

Vol.:(0123456789)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports

SimTune: bridging the simulator
reality gap for resource
management in edge‑cloud
computing
Shreshth Tuli  1*, Giuliano Casale1 & Nicholas R. Jennings2

Industries and services are undergoing an Internet of Things centric transformation globally, giving
rise to an explosion of multi-modal data generated each second. This, with the requirement of low-
latency result delivery, has led to the ubiquitous adoption of edge and cloud computing paradigms.
Edge computing follows the data gravity principle, wherein the computational devices move closer to
the end-users to minimize data transfer and communication times. However, large-scale computation
has exacerbated the problem of efficient resource management in hybrid edge-cloud platforms. In this
regard, data-driven models such as deep neural networks (DNNs) have gained popularity to give rise
to the notion of edge intelligence. However, DNNs face significant problems of data saturation when
fed volatile data. Data saturation is when providing more data does not translate to improvements
in performance. To address this issue, prior work has leveraged coupled simulators that, akin to
digital twins, generate out-of-distribution training data alleviating the data-saturation problem.
However, simulators face the reality-gap problem, which is the inaccuracy in the emulation of real
computational infrastructure due to the abstractions in such simulators. To combat this, we develop
a framework, SimTune, that tackles this challenge by leveraging a low-fidelity surrogate model of the
high-fidelity simulator to update the parameters of the latter, so to increase the simulation accuracy.
This further helps co-simulated methods to generalize to edge-cloud configurations for which human
encoded parameters are not known apriori. Experiments comparing SimTune against state-of-the-
art data-driven resource management solutions on a real edge-cloud platform demonstrate that
simulator tuning can improve quality of service metrics such as energy consumption and response
time by up to 14.7% and 7.6% respectively.

In recent years, the technological landscape has seen a swift integration of the Internet of Things (IoT) driven
infrastructures1. The fundamental driving factor for this transformation has been the increase in computational
capacity as well the decrease in costs of computational devices1. As computation has become more afford-
able and accessible, the enormous amounts of data generated from IoT sensors and actuators have fueled the
growth of paradigms such as edge and cloud computing2. To eschew sending all data to cloud backends that
have high communication-latencies, recent solutions leverage compute resources at the edge of the network3.
Having resources closer to the users facilitates the reduction of data processing times and improves the user-
perceived Quality of Service (QoS)3. However, as the number of computing resources grows and the applica-
tion workloads exhibit non-stationary fluctuations at small timescales, managing such resources becomes even
more complex4. Static heuristic-based solutions are ineffective in such settings, and contemporary solutions rely
on data-driven methods, such as Deep Learning (DL). One such DL approach, namely deep neural networks
(DNNs), has become increasingly popular in managing hybrid edge-cloud platforms. DNN based methods have
shown promise in effectively handling large-scale computational infrastructures, thanks to their high modeling
accuracy and the ability to adapt in volatile settings if supplied enough data4. In this work, we leverage DNNs
for effective resource management in edge-cloud computing platforms to revolutionize the computing landscape
and optimize service delivery.

OPEN

1Imperial College London, London, UK. 2Loughborough University, Loughborough, UK. *email: s.tuli20@
imperial.ac.uk

http://orcid.org/0000-0003-2960-1128
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-23924-0&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

Challenges.  The problem of efficient resource management in edge-cloud platforms is challenging. This is
prominent in the case of task scheduling, which refers to the placement of incoming tasks on available resources
to optimize QoS. As the number of incoming tasks and edge-cloud devices increases, effectively scheduling
tasks becomes challenging5. This is exacerbated by the non-stationary characteristic of most contemporary
applications6. Even with modern neural network based solutions, most methods are unable to effectively adapt
to non-stationary scenarios. In particular, as neural networks are trained on a set of pre-collected data, they tend
to learn data patterns within the given data. Such data could be in the form of application execution traces in an
edge-cloud environment, including the resource utilization characteristics, such as the CPU, Memory, Disk and
Network bandwidth consumption of the running workloads on the computing devices. The trained DNNs can
then predict, for instance, the utilization characteristics in a future timestep, facilitating online resource man-
agement. This also allows us to use neural networks as surrogates to QoS scores and as an aid to optimization6,7.
However, DNNs tend to face the problem of data saturation, which is when giving more traces to the model does
not improve its predictive performance6,8. This has been identified as a common issue in the past8, specifically
due to the exposure bias at training time that is characteristic of the specific edge-cloud configurations used to
generate the training data6.

Existing methods and critique.  The problem of data saturation in neural network based resource man-
agement methods has been addressed to some extent using coupled simulators, also referred to as co-simula-
tors in the literature6. Other methods combine analytical methods with neural networks to simulate a physical
environment9,10. However, such methods typically model a small set of specific aspects of a simulator, such as
energy consumption or response time, using a low-fidelity DNN surrogate. Typically, such methods are not
robust enough to be applicable to a generic simulator. Unlike the low-fidelity surrogates that directly predict QoS
estimates for a future timestep, simulators have encoded information regarding the behavior characteristics of
edge-cloud devices11, allowing them to perform a high-fidelity estimation of QoS scores. However, such infor-
mation is typically encoded in simulators as system parameters by human experts12,13. These parameters include
the typical communication latencies, the power consumption profiles, and task allocation overheads in edge and
cloud machines14. In co-simulation driven methods, akin to a digital twin, an event-driven simulator is used to
virtually execute multiple decisions and observe how they affect the environment and QoS scores. This enables
us to explore out-of-distribution data, enabling the neural model to generalize to settings previously unseen
during training and alleviate data saturation15. Additionally, a simulator could also facilitate injecting informa-
tion regarding the system behavior within the surrogate optimization methods. Further, volatile scenarios can
undergo significant shifts in the data trends, such as the resource utilization time series of running workloads.
This is referred to as high-dynamism in edge-cloud setups16. Such shifts in trends can also be very frequent,
referred to as high-volatility in edge-cloud environments17. Co-simulators can also facilitate obtaining additional
data online without executing resource management decisions in the real infrastructure, facilitating the neural
models to adapt to dynamism and volatility. However, co-simulation based methods face two critical drawbacks.
First, it has been observed that the simplifications and assumptions in setting the human-encoded simulator
parameter give rise to a reality gap between the estimates generated by the simulators and those from actual exe-
cution in the real environments18. This diminishes the credibility of using simulators to avoid data saturation as
now the bias leaks into the co-simulation pipeline due to the assumptions made by human experts while settings
the simulator parameters. Second, in the case of highly volatile workloads, executing several simulations may be
time inefficient or computationally heavy, making it ineffective in large-scale setups with resource-limited edge
devices that run such simulations.

Contributions.  In this work, we aim to address both drawbacks of co-simulation based methods highlighted
above. We develop a novel framework, called SimTune, which aims to tune the simulator parameters to bridge
the reality gap and improve simulated estimates. The key insight that we use is to leverage a DNN based surro-
gate model that acts as a low-fidelity twin of the simulator. This surrogate model uses the hand-encoded simula-
tor parameters, environment and workload characteristics to generate QoS estimates. It is trained to mimic a
high-fidelity simulator in terms of how close it can match the QoS estimates. Considering a trace generated from
a real environment, this surrogate is then used to update the simulator parameters, both offline and online, such
that the reality gap between the simulated estimates and ground-truth values is minimized. The tuned simulator
parameters are then used to perform data augmentation to support data-driven schedulers. Experiments with
multiple state-of-the-art schedulers on a real edge-cloud platform demonstrate that the tuned simulator can
improve QoS scores compared to hand-encoded parameters and baseline tuning methods. Specifically, SimTune
reduces energy consumption and response time by up to 14.7% and 7.6% respectively compared to baselines in
an edge-cloud platform with DL based workloads.

Outline.  The rest of the paper presents a brief background with motivation and related work in “Background
and related work” Section. “Methodology” Section presents the system model, problem formulation and the
SimTune methodology. We then validate and show the efficacy of the SimTune based resource management poli-
cies in “Evaluation” Section. Finally, “Conclusions” section concludes the work and proposes future directions.

Background and related work
Many data-driven scheduling methods have been proposed to effectively manage resources in edge-cloud com-
puting environments. Such methods typically rely on data-driven DNNs to generate QoS estimates and run
gradient-free or gradient-based optimization in the decision space to optimize objective scores.

3

Vol.:(0123456789)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

Scheduling methods.  Most state-of-the-art scheduling methods utilize DNNs or search strategies to find
optimum scheduling decisions19. For instance, a line of work uses evolutionary search approaches such as par-
ticle swarm optimization (PSO) using a trained DNN based QoS surrogate20–22. Other methods utilize genetic
algorithms for QoS aware decision optimization23,24. Typically, such approaches run a gradient-free search
scheme with non-local jumps, using cross-over and mutation-like operations to converge towards an optimum.
However, gradient-free methods are known to take much longer to converge25 and are not as scalable26 as gra-
dient-based methods. This problem is alleviated by gradient-free optimization in schedulers such as GOBI6 and
GOSH7. Such methods take the scheduling decision and state of the edge-cloud system as resource utilization
characteristics of workloads and Fog nodes and output a QoS estimate. Using backpropagation to input6, i.e., fix-
ing the neural network parameters and updating the scheduling decision based on the gradient of DNN output,
these methods find the optimal scheduling decisions. However, continuous approximation of a discrete optimi-
zation problem is known to give sub-optimal decisions in some cases27 and thus, we consider both gradient-free
and gradient-based schedulers in this work. Another category of methods is the ones that leverage reinforce-
ment learning, popular in discrete-time control optimization settings such as distributed computing28–30. Such
methods rely on deep neural networks that directly predict decisions instead of QoS estimates. For instance,
some methods model the scheduling problem as a Markov Decision Process (MDP) and use a deep-reinforce-
ment learning strategy, namely deep Q-Learning (DQL) to schedule workloads in a heterogeneous computing
environment28–30. Policy gradient methods, such as31, train a DNN to predict the optimal scheduling decision
instead of Q values directly. A recent method, Asynchronous Advantage Actor-Critic (A3C), is a policy gradient
method that schedules workloads using an actor-critic pair of DNN agents32. These methods rely on data traces
to train their models and make resource management decisions in edge-cloud environments. We consider these
methods in our evaluation to test the efficacy of a tuned simulator on QoS for offline training and online fine-
tuning of the neural networks used in such methods.

Simulator tuning.  The concern of the reality gap in simulators has been highlighted in the past, albeit
in domains other than resource management13,18. The root cause of simulations being far from realism is the
improper tuning of the simulation parameters for diverse scenarios that need to be simulated. For instance, in
an edge simulator that simulates the energy consumption of edge devices for a given set of workloads, the power
profile is often set by human experts using existing profiling data33. However, this profile, i.e., power consump-
tion for varying utilization of the CPU may change based on the temperature of the ambient environment, cool-
ing solutions as well as device characteristics. Thus, having a preset profile curve may not be helpful in unseen
configurations. Such simplifying assumptions give rise to the discrepancies between simulated and true metric
values. Considering the growing complexity of modern simulators with millions of parameters, each with mil-
lions of possible values, running a brute-force approach is intractable. To address this, prior work has leveraged
evolutionary optimization strategies such as Sim2Real18. Sim2Real iteratively updates the simulator parameters,
performs simulations and evaluates the deviation between the simulated and true values. However, for complex
simulators, running a high-fidelity simulation each time has a high computational overhead, thus, limiting the
number of iterations that can be performed to update the parameters. Another method, DiffTune13, uses a dif-
ferentiable surrogate model that can quickly generate simulated scores and can be used to update the simulation
parameters. However, DiffTune can only be used to tune simulator parameters offline, where we cannot use the
surrogate to perform online data augmentation and fine-tuning of the scheduling methods. DiffTune assumes
a differentiable surrogate and a continuous approximation of the discrete optimization problem; this may not
be ideal in most settings as many simulation parameters typically take categorical values. We solve this issue in
our work by developing a deep neural network based low-fidelity simulator and using gradient based parameter
update. These assumptions constrain us to utilizing a restrictive set of neural or analytical models to optimize
simulation parameters. Forgoing these assumptions, and using more accurate neural models (such as with non-
linear activation functions such as ReLU or sigmoid) with sub-gradients and rounding, limits the performance
of such methods34,35. We empirically demonstrate this in "Evaluation" section.

Methodology
System model.  In this work, we assume a typical edge-cloud computing environment with multiple het-
erogeneous edge and cloud nodes in a broker-worker setup6,12,24. An overview of the system model is presented
in Fig. 1. All workloads are generated in the form of data and processing tasks from the users. The data is col-
lected through IoT sensors and passed to the computational setup via gateway devices such as smartphones and
smartwatches. This is typical in smart-home or smart-hospital like environments that aim to utilize data and
AI applications to process it, for instance, to run energy optimization or for patient care4. Each task also has
expected QoS metrics such as service deadline associated. Such deadlines are also referred to as Service Level
Objectives (SLOs). The tasks are realized in the form of virtualized Docker container applications to allow ease of
management and secure computing36. The container applications and SLOs are relayed to the edge-cloud broker,
which takes all resource management decisions. It monitors the edge and cloud nodes and generates traces of
system characteristics such as resource utilization and QoS metrics. The broker also leverages a discrete event-
driven high-fidelity simulation in tandem with a low-fidelity surrogate model to run the SimTune approach. The
tuned simulator is used by the scheduler to decide optimal scheduling decisions. The decision is enacted in the
physical environment in the form of container allocation or migration to respective edge or cloud nodes. Fur-
ther, we assume a bounded execution timeline, which we divide into fixed-size scheduling intervals. We consider
a bag-of-task workload model wherein a set of new tasks is created at the start of each interval and all tasks can
be scheduled independently.

4

Vol:.(1234567890)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

Formulation.  As described above, we consider a bounded timeline discretized into fixed-size intervals, each
of � seconds. We denote the t-th interval by It , where t ∈ {1, . . . ,T} . We define the state of the edge-cloud envi-
ronment as the collection of resource utilization metrics including CPU, RAM and Disk of the host machines.
This also includes the network topology of the system as a graph with each edge consisting of parameters such
as latency and network bandwidth. We denote the state at the start of interval It by Gt . We also denote the time-
series workload characteristics and scheduling decisions in the form of utilization of the CPU, RAM, Disk and
Network bandwidth and one-hot encoding of the host allocations, up to interval It by Wt . The high-fidelity
simulator is denoted by a function

where φt denotes the simulator parameters in interval It and Qt denotes the set of QoS parameters at the end of
It . Thus, the simulator acts as a high-fidelity model that simulates the scheduling decisions in Wt to estimate the
QoS parameters at a future timestep. We denote the measured QoS metrics at the end of It by Q̄t . Considering a
trace of system states, workload characteristics and QoS metrics T = {(W0,G0, Q̄0), . . . , (WT ,GT , Q̄T)} , we can
generate a simulated QoS trace by following equation (1) for each timestep t. This gives us a simulated trace as
{Q0, . . . ,QT } . Considering QoS metrics as dense vectors, we can quantify the reality-gap for a set of simulator
parameters φt∀t as the L2 norm

As has been observed in the past that data-driven schedulers rely on simulated estimates to optimize resource
management decisions6,7, we need to ensure that we can bridge the reality gap to avoid bias and inaccuracies due
to poorly set simulator parameters. Bridging this gap would translate to higher quality training data generated
via simulators and directly translate to higher QoS scores (we demonstrate this in "Evaluation" section). Thus,
our objective is to minimize the reality gap to ensure that the simulated estimates are close to the physically
generated ones. This can be formulated as

SimTune.  As we do not have Qt at the start of It , the above optimization problem cannot be solved offline
with a collected trace of on-the-fly metric-data after each timestep. To find optimal φt at each timestep, we lever-
age a DNN based model to develop a low-fidelity surrogate model of the simulator that takes in the simulator
inputs, its parameters and outputs another set of QoS estimates

where θ denotes the parameters of the neural network. Now that we have both high and low fidelity models of
the physical environment, we update the simulator parameters in three steps summarized in Fig. 2. First, we
update the neural network parameters ( θ ) to minimize the loss function

for each timestep t. This ensures that the converged parameters, say θ∗ , are such that the surrogate model closely
represents the simulator. This allows us to utilize f̂ as a proxy of f and generate an estimate of Qt for a timestep
t. Second, we fix the parameters θ∗ and update the simulator parameters φt to minimize the reality gap of the

(1)Qt = f (Wt ,Gt;φt),

(2)RGt =
∥∥Q̄t − Qt

∥∥.

(3)
minimize.

φt≥0∀t

T∑

t=1

RGt = �Q̄t − Qt�

s.t. Qt = f (Wt ,φt ,Gt; θ),∀ t.

(4)Q̂t = f̂ (Wt ,φt ,Gt; θ),

(5)Lt =
∥∥∥Qt − Q̂t

∥∥∥,

Figure 1.   System model.

5

Vol.:(0123456789)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

simulator by utilizing the reality gap of the surrogate as a proxy. Advances in optimization of neural network
parameters ( θ ) such as momentum and cosine annealing facilitate quick and scalable optimization also of φt ,
which stands in contrast to typical simulators that do not allow this6. To do this, vanilla stochastic gradient
approaches can be used to update φt at each timestep till convergence using

where γ is the step size. The above equation gives us an iterative rule to update the simulation parameters such
that the reality gap between the trained surrogate and the real trace is minimized. However, the above assumes
a continuous relaxation of categorical simulation parameters such as the number of cores in a host machine (a
natural number) or whether hardware acceleration or hyper-threading is supported by a machine (binary value).
To circumvent this, we use Gradient-Directed Monte-Carlo (GDMC) optimization37. To do this, we perform
discrete perturbations to φt and build a tree from the current value. Each node in the tree is represented as an
ordered pair (v,φt , n) where φt is the parameter value set, vi is a value estimate and n is the frequency of visits to
that node. Each node has multiple child nodes {(φi

t , n
i)}i where we select a node in each Monte-Carlo selection

stage such that the Upper-Confidence-Bound

is minimized, where c is an exploration parameter. The ∇φt�Q̄t − f̂ (Wt ,φt ,Gt; θ
∗)� term aims to select nodes

in the direction of the gradient and the
√

c ln n
ni

 term ensure other perturbations are also explored. As we select
child nodes, we calculate vi = �Q̄t − f̂ (Wt ,φ

i
t ,Gt; θ

∗)� . After each such computation for a leaf node of the tree,
we backpropagate values such that v becomes the frequency weighted average of vi ’s of its child nodes. As we
perform multiple roll-outs and visit frequencies increase, the third term diminishes in value and we perform
higher exploitation than exploration. Finally, we choose the simulation parameter with the highest vi . Performing
the above iteratively to update φt we obtain φ∗

t such that the reality gap of the surrogate is minimized. Finally,
we use the φ∗

t parameters to generate data using the simulator to train the data-driven scheduler. We can also
leverage the low-fidelity surrogate to perform on-the-fly φt optimization to generate φ∗

t at each interval.
This pipeline offers three key advantages compared to prior work. First, as a neural network offers quick

and scalable inference, we can also leverage it for online data generation and tuning of the scheduler. Second,
optimization methods based on backpropagation to input have shown promise in the past and have a signifi-
cant advantage of being able to optimize inputs quickly to minimize simulation tuning time. Third, with each
incoming data point, we can fine-tune θ and then simulator parameters φt to dynamically adapt the simulation
parameters as the workload and system characteristics change with time.

Low‑fidelity surrogate model.  As described in "Introduction" section, we realize the low-fidelity model
using a deep neural network. An overview of the neural network architecture is presented in Fig. 3. In the rest
of the discussion we drop the subscript that identifies timestep t without loss in generality. To infer the temporal
trends in the workload characteristics, we leverage a Transformer model for their improved learning efficiency38.
A Transformer is a multi-head attention based neural model that has been shown to be more scalable than clas-
sical recurrent modelling approaches38. Thus,

(6)φt ← φt − γ · ∇φt

∥∥∥Q̄t − f̂
(
Wt ,φt ,Gt; θ

∗
)∥∥∥,

vi −∇φt

∥∥∥Q̄t − f̂
(
Wt ,φt ,Gt; θ

∗
)∥∥∥−

√
c ln n

ni

(7)
W1 = TransformerEncoder(W),

W2 = ReLU(FeedForward(W1)).

Figure 2.   SimTune pipeline.

6

Vol:.(1234567890)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

However, in this feed-forward network, we use Monte-Carlo Dropout (MCD) for Bayesian inference at test time39.
Unlike conventional dropout, MCD enables dropout at inference time as well. This allows us to run inference
multiple times and obtain a stochastic output, specifically to model the volatile nature of workload characteristics.
To infer the simulator parameters, we use a feed-forward network,

where the LayerNorm operation normalizes the output for stable training. The skip-connection between the
output of the first feed-forward network and the second facilitates faster propagation of gradients and improved
accuracy40. We also infer over the system state, i.e., the edge topology graph using a graph neural network41. We
first form a fully connected graph with all hosts represented as graph nodes. The characteristics of the host hj
are denoted by ej . We then pass the graph through a gated-graph convolution network to capture the inter-host
dependencies rising from the new task allocation. Here, the features for host hj are aggregated over all other hosts
in the graph over r convolutions, resulting in an embedding ejr for each host node in the graph. Specifically, the
gating stage is realized as a Gated Recurrent Unit (GRU) resulting in graph-to-graph updates41 as:

where the second equation performs the convolutions of the features of immediate neighbors in the graph. How-
ever, for large-scale graphs, to ensure that we capture the inter task and host correlations, we perform the above
convolution step r times. Here, a GRU is a recurrent neural network that decides the weightage of the output of
the previous convolution iteration with respect to the latest iteration. This allows the model to efficiently scale
with the size of input graph without significantly losing performance. The stacked representation for all hosts is
represented as G1 . The three encodings are then concatenated and send to the Transformer decoder to generate
a vector of QoS metrics as

The sigmoid activation function makes the output in the range (0, 1), giving us normalized QoS scores. Overall,
the objective of the neural network is to infer the simulated QoS metrics using the workload characteristics,
simulator parameters and system information.

Offline scheduler training.  To train the surrogate model, we use a random scheduler and random per-
turbations to the simulator parameters to generate a dataset trace {(Gt ,φt ,Wt ,Qt)}t . This enables us to cover a
large input state-space. Using such a trace, we can train a surrogate model f̂ (Wt ,φt ,Gt; θ) by minimizing the
loss function

to give converged network parameters θ∗ . Using this, and a trace from a physical system {(Gt ,Wt ,φt , Q̄t)}t , we
tune simulator parameters to get φ∗

t  . The model is trained using normalized QoS metrics from the simulator and
real-systems. Now that we have a high-fidelity scheduler f and a low-fidelity surrogate f̂  , we can utilize them to
train a scheduler g that generates scheduling decisions for an input state of the system. We denote the schedul-
ing decision for interval It by Dt = g(Gt ,Wt) . As such schedulers are typically data-driven, we leverage traces
using random schedulers generated by the tuned simulator f (·;φ∗

t) . Using such a simulator, we generate a trace
of system states and simulated QoS estimates as {(Gt ,Wt ,Qt)}t to train g.

(8)
φ1 = ReLU(FeedForward(φ)),

φ2 = ReLU(LayerNorm(FeedForward(φ1)+ φ1)).

(9)

e
j
0 = tanh

(
W ej + b

)
,

x
j
q =

∑

j

Wqe
j
q−1,

e
j
q = GRU

(
e
j
q−1, x

j
q

)
,

(10)
E1 = TransfomerDecoder

(
W2,φ2, G1

)
,

Q̂ = Sigmoid
(
FeedForward

(
E1
))
.

(11)L =
∑

t

Lt =
∑

t

∥∥∥Qt − f̂ (Wt ,φ
∗
t ,Gt; θ)

∥∥∥,

Figure 3.   Low-Fidelity surrogate of the simulator in SimTune in the form of a neural network. The inputs
include workload characteristics as time-series values, simulator parameters and edge topology as a fully-
connected graph. The output is a vector of QoS estimates.

7

Vol.:(0123456789)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

Algorithm 1 Online Scheduling in SimTune
Require:

Tuned simulator f
Pre-trained surrogate model f̂
Pre-trained scheduler g

1: procedure SIMTUNE(scheduling interval It)
2: Get Gt ,Wt �Monitor system
3: Dt ← g(Gt ,Wt) � Generate scheduling decision
4: Enact scheduling decision Dt in the system � Enact scheduling decision
5: Get Gt+1,Wt+1 �Monitor system at the end of the interval
6: Minimize ‖Q̄t+1− f̂ (Wt+1,φ

∗
t ,Gt ;θ ∗)‖ using GDMC to obtain φ∗

t+1 � Update simulation parameters

7: Utilize φt+1 to generate dataset {(Gt ,Wt ,φ
∗
t+1, Q̂t)}t+1 using f̂ � Generate additional dataset

8: Tune g using {(Gt ,Wt ,φ
∗
t+1, Q̂t)}t+1 � Tune scheduler to adapt to dynamic settings

9: end procedure

Online scheduling.  We now describe how the SimTune framework aids in informed decision making. An
overview is presented in Algorithm 1. Having a trained scheduler g, we generate scheduling decisions at the
start of each interval It as Dt = g(Gt ,Wt) (line 3). To account for dynamism in the system, at the end of each
interval It , we form another datapoint by estimating QoS Q̂t+1 for given state (Gt+1,Wt+1) using φ∗

t and updating
φ∗
t to φ∗

t+1 by minimizing the surrogate reality gap �Q̄t+1 − f̂ (Wt+1,φ
∗
t ,Gt; θ

∗)� (lines 5–6). This allows us to
dynamically tune simulator parameters to minimize the reality gap online. Using the new parameter set φt+1 , we
generate additional dataset {(Gt ,Wt ,φ

∗
t+1, Q̂t)}t+1 to fine-tune the scheduler model g (lines 7–8). Note that we

utilize the QoS estimates of the surrogate f̂ to ensure that multi-step simulation traces can be generated quickly,
minimizing overall decision time of the framework. This additionally allows us to make decisions informed on
the new simulator parameters and consequently the updated system trends.

Evaluation
Testbed.  We consider a hybrid edge-cloud computing setup with 16 Raspberry Pi 4B nodes, 8 with 4GB
RAM and another 8 with 8GB RAM each. This allows the setup to have heterogeneous nodes with different
memory capacities. Our cloud environment consists of 34 virtual machines provisioned from Microsoft Azure
cloud platform. We use diverse VM types in our cloud infrastructure, i.e., B2s with a dual-core CPU and 4GB
RAM, B4ms with a quad-core CPU and 16GB RAM and B8ms with an octa-core CPU and 32GB RAM. We
consider a geographically distributed cloud environment. Our environment consists of 20 VMs in the UK-
South Azure datacenter and 14 in the East-US datacenter. The UK-South cluster consist of 10 B2s and 10
B4ms nodes, while our East-US cluster consists of 7 B4ms and 7 B8ms nodes. Our resource management
policies are run on a cloud broker node in the UK-South location and is a D16asv4 node with a 16 core
CPU and 64 GB RAM. The execution costs are taken from Azure pricing calculator42. The power consumption
values of increments of 10% CPU utilization of Azure VM types are taken from the COSCO simulator6,43, which
includes the power consumption characteristics of B2s, B4ms and B8ms Azure VMs derived from the Stand-
ard Performance Evaluation Corporation (SPEC) benchmark repository44. We ignore the power consumption
characteristics of the cooling infrastructure as in prior work6,14. As these power characteristics may be on out-of-
distribution workloads and we use the fraction of incoming workload requests as a proxy of CPU utilization, the
absolute values of the reported energy consumption in this paper are rough estimates.

Workloads.  In order to evaluate the performance of SimTune, we use the AIoTBench benchmarks45. This is
a widely used AI-based computing benchmark suite that consists of various real-world computer vision applica-
tion instances46. The seven specific application types correspond to the CNN neural networks for image clas-
sification. These include three typical heavy-weight networks: ResNet18, ResNet34, ResNext32x4d, as well as
four light-weight networks: SqueezeNet1-0, GoogleNet, MobileNetV2, MnasNet. These neural models are from
various industry applications, showing that this benchmark captures real-world workloads. In terms of the data
to process, we use 50 images from the COCO dataset47. We use the interval duration in our experiments, i.e., �
as 5 minutes as per prior work6,30,48. To evaluate the proposed method in a controlled environment, we abstract
out the users and IoT layers described in "Methodology" section and use a discrete probability distribution to
realize tasks as container instances. Thus, at the start of each scheduling interval, we create new tasks from a
Poisson distribution with � = 1.2 , sampled uniformly from the seven applications6. The distribution is a natural
choice for a bag-of-tasks workload model, common in edge environments49,50. Each task has an associated SLO
deadline generated from prior work6. When the response time exceeds its deadline, we call that a violation of the
SLO. Our tasks are executed using Docker containers. We run all experiments for 100 scheduling intervals, with
each interval being 300 seconds long, giving a total experiment time of 8 hours and 20 minutes. We average over
five runs and use diverse workload types to ensure statistical significance in our experiments.

Model training and assumptions.  For training, we randomly split the dataset into 80% training and 20%
testing data. We use a learning rate of 10−4 with a weight decay of 10−5 in the Adam optimizer for optimizing the

8

Vol:.(1234567890)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

loss function. The learning rate parameter was set as per grid-search to minimize the reality gap loss mentioned
in equation (11). We use the early stopping criterion for convergence.

Baselines.  We compare SimTune against four baselines as described below. Each of these methods is for tun-
ing the simulator parameters, which we compare against SimTune across six state-of-the-art schedulers: PSO,
GA, DQL, A3C, GOBI and GOSH (see "Background and related work" section for more details). These have
been selected to cover diverse classes of scheduling strategies. PSO and GA are search based schedulers, whereas
DQL and A3C utilize reinforcement learning. GOBI and GOSH use neural network based surrogate models to
run gradient optimization and find near-optimal scheduling decisions. All schedulers were aimed to minimize
the normalized energy consumption and average response time of completed tasks6.

•	 Human Set uses the preset simulator parameters to generate the offline and online training data required by
the scheduling methods.

•	 HGP+ES uses a heteroskedastic Gaussian Process (HGP)51 as a low-fidelity surrogate of the simulator and
evolutionary search (ES) strategy18 to tune the simulator parameters.

•	 LSTM+SGD uses a Long-Short-Term-Memory (LSTM) neural network with differentiable activation func-
tions motivated from DiffTune13. It also uses stochastic-gradient-descent (SGD) to perform gradient opti-
mization of simulator parameters.

•	 LSTM+Sim2Real also uses an LSTM neural network to act as a low-fidelity surrogate of the simulator with
a mutation-crossover based evolutionary search strategy to optimize simulator parameters as done in
Sim2Real18. Akin to Sim2Real and DiffTune methods, HGP+ES, LSTM+SGD and LSTM+Sim2Real utilize
the high-fidelity simulator to generate the on-the-fly data for online scheduler training. We also do not
dynamically tune the simulator parameters in these methods13,18.

Evaluation metrics.  To test the efficacy and performance improvement of the SimTune approach, we com-
pare the end-term unnormalized QoS metrics. We compare the energy consumption of the edge-cloud testbed
described above in terms of KW· hr averaged over the 100 intervals for which we run an experiment. We also
measure the average response time of the completed tasks in the system. Both energy consumption and response
time metrics help us to distinguish the efficacy of the schedulers for each tuning (or preset) simulator. We also
compare the average SLO violation rates of completed tasks. Further, we compare the execution cost (in US Dol-
lars) of cloud machines in terms of the pay-per-use cost as well as the energy consumption cost of edge devices.
We amortize the overall cost with the number of completed containers. Finally, we also compare the overheads
of the decision making models by observing the average waiting time of tasks to get allocated to a host and the
average scheduling time of each approach.

Comparison with baselines.  Figure 4 compares the QoS metrics of SimTune with the baseline methods
for each of the state-of-the-art schedulers. SimTune outperforms the baselines across most metrics, such as
reducing energy consumption and response time by up to 14.7% and 7.6%, respectively. Specifically, in terms of
energy, LSTM+Sim2Real has the lowest consumption of 3.714 KW· hr across all baselines, averaged across all
schedulers. SimTune reduces this to 3.124 KW·hr, viz, 14.7% lower than the best baseline. SimTune is able to pro-
vide improved energy efficiency compared to the human-set values thanks to the ability to tune the power profile

PSO GA DQL A3C GOBI GOSH
0

2

4

6
In
te
rv
al

E
ne

rg
y
(K

W
·h
r)

(a) Energy Consumption

PSO GA DQL A3C GOBI GOSH
0

10

20

R
es
po

ns
e
T
im

e
(s
)

(b) Response Time

PSO GA DQL A3C GOBI GOSH
0.0

0.1

0.2

SL
O

V
io
la
ti
on

R
at
e

(c) SLO Violation Rate

PSO GA DQL A3C GOBI GOSH
0.0

0.5

1.0

A
ve
ra
ge

C
os
t
(U

SD
)

(d) Execution Cost

PSO GA DQL A3C GOBI GOSH
0

1

2

Sc
he
du

lin
g
T
im

e
(s
)

(e) Scheduling Time

PSO GA DQL A3C GOBI GOSH
0

2

4

W
ai
ti
ng

T
im

e
(s
)

(f) Waiting Time

Figure 4.   Comparison of QoS parameters (averaged over intervals) of SimTune against baseline methods.

9

Vol.:(0123456789)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

characteristics of the edge and cloud hosts. Without simulator tuning, the data-driven schedulers are trained
using the SPEC power profiles, which may not be ideal representations of the power consumption characteristics
given the different workload nature of AIoTBench applications. Moreover, in terms of average response time,
the LSTM+SGD baseline gives 15.45 s amortized across all schedulers. SimTune gives a lower response time of
14.28 s, 7.6% lower than LSTM+SGD. The improvements in energy consumption and response time are primar-
ily due to the lower reality gap measured in terms of the loss function in Eq. (11). SimTune’s converged loss value
is 0.0345, whereas the lowest loss among the baselines is of the LSTM+Sim2Real approach with 0.1922. This is
due to the ability of SimTune to capture both temporal trends using a Transformer encoder as well as spatial cor-
relations utilizing a gated-graph convolution network. The low loss value ensures that the data generated by the
simulator and the surrogate are closer to the ground-truth values, alleviating the exposure bias problem and fur-
nishing more realistic data to the schedulers. This directly translates to better QoS scores. Lower response times
if SimTune also leads to significant improvements in terms of SLO violation rates. The lowest average violation
rate among all baselines is achieved by HGP+ES of 0.153, whereas SimTune gives an average SLO violation rate
of 0.135, 11.8% lower than the best score. Similarly, we see that SimTune gives the lowest average execution cost
of 0.650 USD, which is 7.86% lower than the most cost-efficient baseline, i.e., LSTM+Sim2Real with an average
cost of 0.706 USD. Compared to stochastic gradient descent, the GDMC based parameter updates enables Sim-
Tune to update categorical parameters as well. LSTM+SGD uses continuous relaxation of the parameter updates
instead, which has been shown to perform poorly compared to GDMC37. This is enabled by the Monte-Carlo
Dropout for Bayseian inference from the low-fidelity neural network model. Finally, we also see lower schedul-
ing times for the SimTune approach, thanks to the low-fidelity surrogate being used to generate on-the-fly data
for dynamic scheduler training (line 7 in Algorithm 1). This also translates to lower average waiting times for
the incoming tasks.

Ablation analysis.  To test the importance of the hybrid approach of SimTune that utilizes both a high-
fidelity simulator and low-fidelity surrogate, we modify the approach as follows. First, we consider a model
without the high-fidelity simulator to generate offline training data and utilize the surrogate itself. We refer to
this approach by SimTune w/o HiFi. Second, we replace the low-fidelity surrogate model with the high-fidelity
simulator to generate data for online training of the scheduler in SimTune. We call this approach as SimTune
w/o LoFi. Table 1 presents the results of SimTune and the ablation models. Without the high-fidelity simulator
for offline training (SimTune w/o HiFi), we observe a drop in the QoS metrics; for instance, SLO Violation rates
increase by 5.4%. This is due to the lack of unexplored simulator configurations by the surrogate leading to poor
offline training of the schedulers. Further, without the surrogate (SimTune w/o LoFi), the online data genera-

Table 1.   Ablation analysis. Best values are shown in bold.

Approach

Scheduler

PSO GA DQL A3C GOBI GOSH

Interval Energy (KW·hr)

SimTune w/o HiFi 4.772 ± 0.283 4.572 ± 0.360 3.772 ± 0.133 3.428 ± 0.258 4.113 ± 0.186 2.411 ± 0.236

SimTune w/o LoFi 4.262 ± 0.330 4.252 ± 0.267 3.750 ± 0.198 3.334 ± 0.146 3.505 ± 0.045 2.443 ± 0.245

SimTune 3.788 ± 0.020 3.815 ± 0.212 3.295 ± 0.094 3.016 ± 0.049 2.931 ± 0.007 1.900 ± 0.033

Response time (s)

SimTune w/o HiFi 22.800 ± 0.407 18.649 ± 0.374 16.371 ± 0.635 12.669 ± 1.830 13.945 ± 0.722 11.434 ± 0.166

SimTune w/o LoFi 22.471 ± 0.842 17.294 ± 0.833 15.044 ± 0.421 12.818 ± 0.316 11.780 ± 0.607 10.489 ± 0.563

SimTune 21.112 ± 0.201 17.067 ± 0.606 14.179 ± 0.610 12.560 ± 1.175 11.119 ± 0.196 10.287 ± 0.663

SLO violation rate

SimTune w/o HiFi 0.215 ± 0.003 0.177 ± 0.000 0.182 ± 0.015 0.123 ± 0.007 0.141 ± 0.005 0.100 ± 0.011

SimTune w/o LoFi 0.205 ± 0.015 0.166 ± 0.005 0.166 ± 0.005 0.126 ± 0.027 0.129 ± 0.013 0.090 ± 0.005

SimTune 0.190 ± 0.001 0.161 ± 0.011 0.148 ± 0.029 0.113 ± 0.012 0.123 ± 0.020 0.080 ± 0.025

Average execution cost (USD)

SimTune w/o HiFi 1.360 ± 0.066 0.833 ± 0.345 0.737 ± 0.032 0.625 ± 0.041 0.425 ± 0.146 0.426 ± 0.109

SimTune w/o LoFi 1.154 ± 0.076 0.862 ± 0.253 0.739 ± 0.333 0.697 ± 0.129 0.403 ± 0.195 0.399 ± 0.167

SimTune 1.108 ± 0.311 0.784 ± 0.157 0.658 ± 0.344 0.620 ± 0.064 0.370 ± 0.023 0.362 ± 0.171

Scheduling time (s)

SimTune w/o HiFi 0.763 ± 0.207 0.871 ± 0.329 1.235 ± 0.066 0.563 ± 0.217 0.155 ± 0.101 0.090 ± 0.003

SimTune w/o LoFi 1.449 ± 0.201 1.737 ± 0.262 2.469 ± 0.194 1.256 ± 0.326 0.315 ± 0.074 0.205 ± 0.158

SimTune 0.712 ± 0.072 0.814 ± 0.021 1.056 ± 0.342 0.559 ± 0.243 0.145 ± 0.236 0.095 ± 0.185

Waiting time (s)

SimTune w/o HiFi 1.957 ± 0.445 0.928 ± 0.160 1.878 ± 0.225 0.985 ± 0.086 0.378 ± 0.099 0.254 ± 0.450

SimTune w/o LoFi 3.130 ± 0.244 1.277 ± 0.028 3.189 ± 0.146 1.521 ± 0.103 0.568 ± 0.019 0.399 ± 0.214

SimTune 1.576 ± 0.179 0.851 ± 0.064 2.021 ± 0.058 0.944 ± 0.091 0.348 ± 0.086 0.268 ± 0.051

10

Vol:.(1234567890)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

tion is more time-consuming, which gives rise to higher scheduling and wait times and poorer QoS scores. For
instance, SLO violation rates increase by 13% when we do not use low-fidelity model. This demonstrates the
effectiveness of the hybrid high and low fidelity approach of SimTune.

Scalability analysis.  To test the performance of the SimTune approach at different scales we generate QoS
scores for diverse sizes of the edge-cloud testbed. We perform a controlled experiment with 1:2 ratio of edge and
cloud nodes where we use equal number of 4GB and 8GB RAM Raspberry Pi 4B nodes in our edge environment
and B2s cloud VM type in UK-South. We vary the number of edge devices from 2 to 16, with number of cloud
nodes being 4 to 32. This gives the total number of nodes from 6 to 48. We keep the � parameter proportionate to
the size of the setup. For the 6 node setup � = 0.16 and for the 48 node setup � = 1.28 . The scores with different
sizes of the network, averaged over all scheduling methods, are shown in Fig. 5. As the number of nodes increase,
so does the energy consumption and execution cost. However, SimTune gives the lowest energy consumption
and operational costs across all models. Response time and SLO violation rates do not show significant devia-
tion for the baseline models. Due to the high chance of contention in case of limited number of devices, we see
that response time and consequently SLO violation rates are typically higher for 9 or less nodes. Even in such
cases SimTune gives better scores compared to baselines. This is primarily due to the ability of the gated graph
convolution network to effectively scale performance with the size of the input graph52. We also compare the
tuning time of the simulator parameters for the different number of nodes in the setup in Fig. 6. When the simu-
lator parameters are static and Human Set, there is no tuning overhead. However, this limits its performance in
non-stationary settings where dynamic parameter updates may be required. Within the parameter update based
methods, SimTune has the lowest tuning time thanks to its Transformer based design that allows us to furnish
all tuning data together in lieu of the auto-regressive inference style in recurrent models such as LSTM+SGD
and LSTM+Sim2Real.

Conclusions
This paper proposes SimTune, a framework to bridge the reality gap between the simulated and ground-truth
QoS traces. SimTune leverages a low-fidelity neural network based surrogate model to tune the parameters of a
high-fidelity simulator. The SimTune approach trains the neural network surrogate to mimic the simulator and
updates the simulator parameters using the surrogate reality gap as a proxy and updating parameters using a
gradient-based Monte-Carlo search strategy. The updated parameters are then used to generate offline data using
the simulator and online data using the surrogate to train a data-driven scheduler. Experiments with real-life
AI-based benchmark applications on a heterogeneous edge-cloud testbed show that SimTune gives at least 14.7%
lower energy consumption, 7.6% lower response times and 11.8% lower SLO violation rates compared to state-of-
the-art baselines. This demonstrates the importance of simulator tuning for optimal QoS in the domain of edge
intelligence. Future work would investigate the application of the SimTune approach to also include additional

6 12 18 24 30 36 42 48

Number of nodes

1

2

3

4
In
te
rv
al

E
ne

rg
y
(K

W
·h
r)

(a) Energy Cons.

6 12 18 24 30 36 42 48

Number of nodes

14

16

18

R
es
p
on

se
T
im

e
(s
)

(b) Response Time

6 12 18 24 30 36 42 48

Number of nodes

0.10

0.12

0.14

0.16

0.18

SL
O

V
io
la
ti
on

R
at
e

(c) SLO Viol. Rate

6 12 18 24 30 36 42 48

Number of nodes

0.2

0.4

0.6

A
ve

ra
ge

C
os
t
(U

SD
)

(d) Execution Cost

6 12 18 24 30 36 42 48

Number of nodes

0.2

0.4

0.6

0.8

1.0

Sc
he

du
lin

g
T
im

e
(s
)

(e) Scheduling Time (f) Waiting Time

Figure 5.   Scalability Analysis of SimTune and baselines with different number of nodes in the edge-cloud setup.

6 12 18 24 30 36 42 48

Number of nodes

0.0

0.2

0.4

0.6

Si
m
ul
at
or

T
un

in
g
T
im

e
(s
)

Figure 6.   Tuning time of SimTune and baseline models with different number of nodes in the edge-cloud setup.

11

Vol.:(0123456789)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

resource management decisions such as resource provisioning and autoscaling53. We also aim to explore the
application of SimTune in the domain of fault-tolerant computing.

Data availability
All data and code used for the current study are available from the corresponding author on reasonable request.

Code availability
The code and relevant training scripts are made publicly available on GitHub under BSD-3 licence at https://​
github.​com/​imper​ial-​qore/​SimTu​ne with a snapshot of the paper version available at https://​doi.​org/​10.​5281/​
zenodo.​72739​16.

Received: 4 May 2022; Accepted: 7 November 2022

References
	 1.	 Zhou, Z. et al. Edge intelligence: Paving the last mile of artificial intelligence with edge computing. Proc. IEEE 107, 1738–1762

(2019).
	 2.	 Ghosh, A. M. & Grolinger, K. Edge-cloud computing for internet of things data analytics: Embedding intelligence in the edge with

deep learning. IEEE Trans. Industr. Inf. 17, 2191–2200 (2020).
	 3.	 Khan, W. Z., Ahmed, E., Hakak, S., Yaqoob, I. & Ahmed, A. Edge computing: A survey. Futur. Gener. Comput. Syst. 97, 219–235

(2019).
	 4.	 Shi, Y., Yang, K., Jiang, T., Zhang, J. & Letaief, K. B. Communication-efficient edge ai: Algorithms and systems. IEEE Commun.

Surv. Tutor. 22, 2167–2191 (2020).
	 5.	 Zhong, Z., Xu, M., Rodriguez, M. A., Xu, C., Buyya, R. Machine learning-based orchestration of containers: A taxonomy and future

directions. ACM Comput. Surv. (CSUR) (2021).
	 6.	 Tuli, S., Poojara, S. R., Srirama, S. N., Casale, G. & Jennings, N. R. COSCO: Container orchestration using co-simulation and

gradient based optimization for fog computing environments. IEEE Trans. Parallel Distrib. Syst. 33, 101–116 (2022).
	 7.	 Tuli, S., Casale, G., Jennings, N. R. GOSH: Task scheduling using deep surrogate models in fog computing environments. IEEE

Trans. Parallel Distrib Syst. (2022).
	 8.	 Rakitianskaia, A., Engelbrecht, A. Measuring saturation in neural networks. In 2015 IEEE Symposium Series on Computational

Intelligence, 1423–1430 (IEEE, 2015).
	 9.	 Niu, Z., Casale, G. A mixture density network approach to predicting response times in layered systems. In 2021 29th International

Symposium On Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS), 1–8 (IEEE, 2021).
	10.	 Mouelhi, W., Huyet, A.-L. & Pierreval, H. Combining simulation and artificial neural networks: an overview. In 6th EUROSIM

Congress on Modeling and Simulation,(CD-ROM) (2007).
	11.	 Svorobej, S. et al. Simulating fog and edge computing scenarios: An overview and research challenges. Future Internet 11, 55 (2019).
	12.	 Silva Filho, M. C., Oliveira, R. L., Monteiro, C. C., Inácio, P. R. & Freire, M. M. Cloudsim plus: A cloud computing simulation

framework pursuing software engineering principles for improved modularity, extensibility and correctness. In 2017 IFIP/IEEE
symposium on integrated network and service management (IM), 400–406 (IEEE, 2017).

	13.	 Renda, A., Chen, Y., Mendis, C. & Carbin, M. Difftune: Optimizing cpu simulator parameters with learned differentiable surrogates.
In 2020 53rd Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), 442–455 (IEEE, 2020).

	14.	 Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. & Buyya, R. Cloudsim: A toolkit for modeling and simulation of cloud
computing environments and evaluation of resource provisioning algorithms. Softw. Pract. Exp. 41, 23–50 (2011).

	15.	 Berend, D. et al. Cats are not fish: Deep learning testing calls for out-of-distribution awareness. In Proceedings of the 35th IEEE/
ACM international conference on automated software engineering, 1041–1052 (2020).

	16.	 Ramachandran, U., Gupta, H., Hall, A., Saurez, E. & Xu, Z. Elevating the edge to be a peer of the cloud. In 2019 IEEE 12th Inter-
national Conference on Cloud Computing (CLOUD), 17–24 (IEEE, 2019).

	17.	 Le, M., Song, Z., Kwon, Y.-W. & Tilevich, E. Reliable and efficient mobile edge computing in highly dynamic and volatile environ-
ments. In 2017 Second International Conference on Fog and Mobile Edge Computing (FMEC), 113–120 (IEEE, 2017).

	18.	 Collins, J., Brown, R., Leitner, J. & Howard, D. Traversing the reality gap via simulator tuning. arXiv preprint arXiv:​2003.​01369
(2020).

	19.	 Nayeri, Z. M., Ghafarian, T. & Javadi, B. Application placement in Fog computing with AI approach: Taxonomy and a state of the
art survey. J. Netw. Comput. Appl. 185, 103078 (2021).

	20.	 Xie, Y. et al. A novel directional and non-local-convergent particle swarm optimization based workflow scheduling in cloud-edge
environment. Futur. Gener. Comput. Syst. 97, 361–378 (2019).

	21.	 Bi, J., Yuan, H., Duanmu, S., Zhou, M. & Abusorrah, A. Energy-optimized partial computation offloading in mobile-edge comput-
ing with genetic simulated-annealing-based particle swarm optimization. IEEE Internet Things J. 8, 3774–3785 (2020).

	22.	 Jian, C., Chen, J., Ping, J. & Zhang, M. An improved chaotic bat swarm scheduling learning model on edge computing. IEEE Access
7, 58602–58610 (2019).

	23.	 Chen, Z. et al. Computation offloading and task scheduling for dnn-based applications in cloud-edge computing. IEEE Access 8,
115537–115547 (2020).

	24.	 Han, K., Xie, Z. & Lv, X. Fog computing task scheduling strategy based on improved genetic algorithm. Comput. Sci. 4, 22 (2018).
	25.	 Bogolubsky, L. et al. Learning supervised pagerank with gradient-based and gradient-free optimization methods. In Advances in

Neural Information Processing Systems, 4914–4922 (2016).
	26.	 Rios, L. M. & Sahinidis, N. V. Derivative-free optimization: A review of algorithms and comparison of software implementations.

J. Global Optim. 56, 1247–1293 (2013).
	27.	 Miranda-Varela, M.-E. & Mezura-Montes, E. Constraint-handling techniques in surrogate-assisted evolutionary optimization.

An empirical study. Appl. Soft Comput. 73, 215–229 (2018).
	28.	 Tang, Z., Zhou, X., Zhang, F., Jia, W. & Zhao, W. Migration modeling and learning algorithms for containers in fog computing.

IEEE Trans. Serv. Comput. 12, 712–725 (2018).
	29.	 Li, H., Ota, K. & Dong, M. Deep reinforcement scheduling for mobile crowdsensing in fog computing. ACM Trans. Internet Technol.

(TOIT) 19, 1–18 (2019).
	30.	 Zhang, Q. et al. A double deep q-learning model for energy-efficient edge scheduling. IEEE Trans. Serv. Comput. 12, 739–749

(2018).
	31.	 Sheng, S., Chen, P., Chen, Z., Wu, L. & Yao, Y. Deep reinforcement learning-based task scheduling in iot edge computing. Sensors

21, 1666 (2021).
	32.	 Tuli, S., Ilager, S., Ramamohanarao, K. & Buyya, R. Dynamic scheduling for stochastic edge-cloud computing environments using

A3C learning and residual recurrent neural networks. IEEE Trans. Mob. Comput. (2020).

https://github.com/imperial-qore/SimTune
https://github.com/imperial-qore/SimTune
https://doi.org/10.5281/zenodo.7273916
https://doi.org/10.5281/zenodo.7273916
http://arxiv.org/abs/2003.01369

12

Vol:.(1234567890)

Scientific Reports | (2022) 12:19158 | https://doi.org/10.1038/s41598-022-23924-0

www.nature.com/scientificreports/

	33.	 Kang, M. & Park, D. Remote monitoring systems of unsafe software execution using qr code-based power consumption profile for
iot edge devices. In 2021 International Conference on Electronics, Information, and Communication (ICEIC), 1–4 (IEEE, 2021).

	34.	 Nitanda, A. Stochastic proximal gradient descent with acceleration techniques. Adv. Neural Inf. Process. Syst. 27 (2014).
	35.	 Daniilidis, A. & Lemaréchal, C. On a primal-proximal heuristic in discrete optimization. Math. Program. 104, 105–128 (2005).
	36.	 Di Pietro, R. & Lombardi, F. Virtualization technologies and cloud security: Advantages, issues, and perspectives. In From Database

to Cyber Security 166–185 (Springer, 2018).
	37.	 Hu, X., Beratan, D. N. & Yang, W. A gradient-directed monte carlo approach to molecular design. J. Chem. Phys. 129, 064102

(2008).
	38.	 Vaswani, A. et al. Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017).
	39.	 Gal, Y. & Ghahramani, Z. Dropout as a bayesian approximation: Representing model uncertainty in deep learning. In International

Conference on Machine Learning 1050–1059 (PMLR, 2016).
	40.	 He, F., Liu, T. & Tao, D. Why resnet works? Residuals generalize. IEEE Trans. Neural Netw. Learn. Syst. 31, 5349–5362 (2020).
	41.	 Ruiz, L., Gama, F. & Ribeiro, A. Gated graph recurrent neural networks. IEEE Trans. Signal Process. 68, 6303–6318 (2020).
	42.	 Microsoft Azure Pricing Calculator. https://​azure.​micro​soft.​com/​en-​us/​prici​ng/​calcu​lator/. (Accessed on 04/18/2022).
	43.	 COSCO Simulator Power Models for Azure VMs. https://​github.​com/​imper​ial-​qore/​COSCO/​tree/​master/​metri​cs/​power​models.

(Accessed on 09/18/2022).
	44.	 SPEC Power SSJ 2008 Results. https://​www.​spec.​org/​power_​ssj20​08/​resul​ts/​res20​11q1/. (Accessed on 11/02/2022).
	45.	 AIoTBench, BenchCouncil. https://​www.​bench​counc​il.​org/​aiben​ch/​aiotb​ench/​index.​html. (Accessed on 04/18/2022).
	46.	 Luo, C. et al. AIoT bench: Towards comprehensive benchmarking mobile and embedded device intelligence. In International

Symposium on Benchmarking, Measuring and Optimization, 31–35 (Springer, 2018).
	47.	 Lin, T. -Y. et al. Microsoft COCO: Common objects in context. In European Conference on Computer Vision, 740–755 (Springer,

2014).
	48.	 Zheng, J., Ng, T. E., Sripanidkulchai, K. & Liu, Z. Pacer: A progress management system for live virtual machine migration in cloud

computing. IEEE Trans. Netw. Serv. Manag. 10, 369–382 (2013).
	49.	 Mao, Y., Zhang, J. & Letaief, K. B. Dynamic computation offloading for mobile-edge computing with energy harvesting devices.

IEEE J. Sel. Areas Commun. 34, 3590–3605 (2016).
	50.	 Basu, D., Wang, X., Hong, Y., Chen, H. & Bressan, S. Learn-as-you-go with megh: Efficient live migration of virtual machines.

IEEE Trans. Parallel Distrib. Syst. 30, 1786–1801 (2019).
	51.	 Zinnen, A., & Engel, T. Deadline constrained scheduling in hybrid clouds with gaussian processes. In 2011 International Conference

on High Performance Computing & Simulation, 294–300 (IEEE, 2011).
	52.	 Tuli, S. et al. HUNTER: AI based holistic resource management for sustainable cloud computing. J. Syst. Softw. 184, 111124 (2022).
	53.	 Qu, C., Calheiros, R. N. & Buyya, R. Auto-scaling web applications in clouds: A taxonomy and survey. ACM Comput. Surv. (CSUR)

51, 1–33 (2018).

Acknowledgements
S.T. is supported by the President’s PhD scholarship at Imperial College London.

Author contributions
S.T. designed the SimTune methodology, conceived and conducted the experiments. S.T., G.C. and N.R.J analyzed
the results and reviewed the manuscript.

Competing Interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

https://azure.microsoft.com/en-us/pricing/calculator/
https://github.com/imperial-qore/COSCO/tree/master/metrics/powermodels
https://www.spec.org/power_ssj2008/results/res2011q1/
https://www.benchcouncil.org/aibench/aiotbench/index.html
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	SimTune: bridging the simulator reality gap for resource management in edge-cloud computing
	Challenges.
	Existing methods and critique.
	Contributions.
	Outline.
	Background and related work
	Scheduling methods.
	Simulator tuning.

	Methodology
	System model.
	Formulation.
	SimTune.
	Low-fidelity surrogate model.
	Offline scheduler training.
	Online scheduling.

	Evaluation
	Testbed.
	Workloads.
	Model training and assumptions.
	Baselines.
	Evaluation metrics.
	Comparison with baselines.
	Ablation analysis.
	Scalability analysis.

	Conclusions
	References
	Acknowledgements

